コード例 #1
0
def test_advinc_subtensor1_dtype():
    # Test the mixed dtype case
    shp = (3, 4)
    for dtype1, dtype2 in [
        ("float32", "int8"),
        ("float32", "float64"),
        ("uint64", "int8"),
        ("int64", "uint8"),
        ("float16", "int8"),
        ("float16", "float64"),
        ("float16", "float16"),
    ]:
        shared = gpuarray_shared_constructor
        xval = np.arange(np.prod(shp), dtype=dtype1).reshape(shp) + 1
        yval = np.empty((2,) + shp[1:], dtype=dtype2)
        yval[:] = 10
        x = shared(xval, name="x")
        y = tensor(dtype=yval.dtype, broadcastable=(False,) * len(yval.shape), name="y")
        expr = advanced_inc_subtensor1(x, y, [0, 2])
        f = aesara.function([y], expr, mode=mode_with_gpu)
        assert (
            sum(
                [
                    isinstance(node.op, GpuAdvancedIncSubtensor1_dev20)
                    for node in f.maker.fgraph.toposort()
                ]
            )
            == 1
        )
        rval = f(yval)
        rep = xval.copy()
        np.add.at(rep, [[0, 2]], yval)
        assert np.allclose(rval, rep)
コード例 #2
0
def bincount(x, weights=None, minlength=None, assert_nonneg=False):
    """Count number of occurrences of each value in array of ints.

    The number of bins (of size 1) is one larger than the largest
    value in x. If minlength is specified, there will be at least
    this number of bins in the output array (though it will be longer
    if necessary, depending on the contents of x). Each bin gives the
    number of occurrences of its index value in x. If weights is
    specified the input array is weighted by it, i.e. if a value n
    is found at position i, out[n] += weight[i] instead of out[n] += 1.

    Parameters
    ----------
    x : 1 dimension, nonnegative ints
    weights : array of the same shape as x with corresponding weights.
        Optional.
    minlength : A minimum number of bins for the output array.
        Optional.
    assert_nonneg : A flag that inserts an assert_op to check if
        every input x is nonnegative.
        Optional.


    .. versionadded:: 0.6

    """
    if x.ndim != 1:
        raise TypeError("Inputs must be of dimension 1.")

    if assert_nonneg:
        assert_op = Assert("Input to bincount has negative values!")
        x = assert_op(x, aet_all(x >= 0))

    max_value = aet.cast(x.max() + 1, "int64")

    if minlength is not None:
        max_value = maximum(max_value, minlength)

    # Note: we do not use inc_subtensor(out[x], ...) in the following lines,
    # since out[x] raises an exception if the indices (x) are int8.
    if weights is None:
        out = aet.zeros([max_value], dtype=x.dtype)
        out = advanced_inc_subtensor1(out, 1, x)
    else:
        out = aet.zeros([max_value], dtype=weights.dtype)
        out = advanced_inc_subtensor1(out, weights, x)
    return out
コード例 #3
0
def test_advinc_subtensor1():
    # Test the second case in the opt local_gpu_advanced_incsubtensor1
    for shp in [(3, 3), (3, 3, 3)]:
        shared = gpuarray_shared_constructor
        xval = np.arange(np.prod(shp), dtype="float32").reshape(shp) + 1
        yval = np.empty((2,) + shp[1:], dtype="float32")
        yval[:] = 10
        x = shared(xval, name="x")
        y = tensor(dtype="float32", broadcastable=(False,) * len(shp), name="y")
        expr = advanced_inc_subtensor1(x, y, [0, 2])
        f = aesara.function([y], expr, mode=mode_with_gpu)
        assert (
            sum(
                [
                    isinstance(node.op, GpuAdvancedIncSubtensor1)
                    for node in f.maker.fgraph.toposort()
                ]
            )
            == 1
        )
        rval = f(yval)
        rep = xval.copy()
        np.add.at(rep, [0, 2], yval)
        assert np.allclose(rval, rep)
コード例 #4
0
def test_incsub_f16():
    shp = (3, 3)
    shared = gpuarray_shared_constructor
    xval = np.arange(np.prod(shp), dtype="float16").reshape(shp) + 1
    yval = np.empty((2,) + shp[1:], dtype="float16")
    yval[:] = 2
    x = shared(xval, name="x")
    y = tensor(dtype="float16", broadcastable=(False,) * len(shp), name="y")
    expr = advanced_inc_subtensor1(x, y, [0, 2])
    f = aesara.function([y], expr, mode=mode_with_gpu)
    assert (
        sum(
            [
                isinstance(node.op, GpuAdvancedIncSubtensor1)
                for node in f.maker.fgraph.toposort()
            ]
        )
        == 1
    )
    rval = f(yval)
    rep = xval.copy()
    np.add.at(rep, [[0, 2]], yval)
    assert np.allclose(rval, rep)

    expr = inc_subtensor(x[1:], y)
    f = aesara.function([y], expr, mode=mode_with_gpu)
    assert (
        sum(
            [isinstance(node.op, GpuIncSubtensor) for node in f.maker.fgraph.toposort()]
        )
        == 1
    )
    rval = f(yval)
    rep = xval.copy()
    rep[1:] += yval
    assert np.allclose(rval, rep)
コード例 #5
0
def test_advinc_subtensor1_vector_scalar():
    # Test the case where x is a vector and y a scalar
    shp = (3,)
    for dtype1, dtype2 in [
        ("float32", "int8"),
        ("float32", "float64"),
        ("float16", "int8"),
        ("float16", "float64"),
        ("float16", "float16"),
        ("int8", "int8"),
        ("int16", "int16"),
    ]:
        shared = gpuarray_shared_constructor
        xval = np.arange(np.prod(shp), dtype=dtype1).reshape(shp) + 1
        yval = np.asarray(10, dtype=dtype2)
        x = shared(xval, name="x")
        y = tensor(dtype=yval.dtype, broadcastable=(False,) * len(yval.shape), name="y")
        expr = advanced_inc_subtensor1(x, y, [0, 2])
        f = aesara.function([y], expr, mode=mode_with_gpu)

        assert (
            sum(
                [
                    isinstance(
                        node.op,
                        (GpuAdvancedIncSubtensor1_dev20, GpuAdvancedIncSubtensor1),
                    )
                    for node in f.maker.fgraph.toposort()
                ]
            )
            == 1
        )
        rval = f(yval)
        rep = xval.copy()
        rep[[0, 2]] += yval
        assert np.allclose(rval, rep)