コード例 #1
0
ファイル: test_model.py プロジェクト: yangjue-han/affine
    def setUp(self):

        np.random.seed(100)

        # initialize yield curve and VAR observed factors
        yc_data_test = pa.DataFrame(
            np.random.random((test_size - k_ar, nyields)))
        var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))
        mats = list(range(1, nyields + 1))

        # initialize masked arrays
        self.dim = dim = k_ar * neqs + latent
        lam_0 = make_nomask([dim, 1])
        lam_1 = make_nomask([dim, dim])
        delta_0 = make_nomask([1, 1])
        delta_1 = make_nomask([dim, 1])
        mu = make_nomask([dim, 1])
        phi = make_nomask([dim, dim])
        sigma = make_nomask([dim, dim])

        # Setup some of the elements as non-zero
        # This sets up a fake model where only lambda_0 and lambda_1 are
        # estimated
        lam_0[:neqs] = ma.masked
        lam_0[-latent:] = ma.masked
        lam_1[:neqs, :neqs] = ma.masked
        lam_1[-latent:, -latent:] = ma.masked
        delta_0[:, :] = np.random.random(1)
        delta_1[:neqs] = np.random.random((neqs, 1))
        mu[:neqs] = np.random.random((neqs, 1))
        phi[:neqs, :] = np.random.random((neqs, dim))
        sigma[:, :] = np.identity(dim)

        self.mod_kwargs = {
            'yc_data': yc_data_test,
            'var_data': var_data_test,
            'k_ar': k_ar,
            'neqs': neqs,
            'mats': mats,
            'lam_0_e': lam_0,
            'lam_1_e': lam_1,
            'delta_0_e': delta_0,
            'delta_1_e': delta_1,
            'mu_e': mu,
            'phi_e': phi,
            'sigma_e': sigma,
            'latent': latent,
            'no_err': [1]
        }

        self.guess_params = np.random.random(
            (neqs**2 + neqs + (2 * latent), )).tolist()
        self.affine_obj = Affine(**self.mod_kwargs)
        self.affineml_obj = AffineML(**self.mod_kwargs)
コード例 #2
0
ファイル: test_model.py プロジェクト: bartbkr/affine
    def setUp(self):

        np.random.seed(100)

        # initialize yield curve and VAR observed factors
        yc_data_test = pa.DataFrame(np.random.random((test_size - k_ar,
                                                      nyields)))
        var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))
        mats = list(range(1, nyields + 1))

        # initialize masked arrays
        self.dim = dim = k_ar * neqs + latent
        lam_0 = make_nomask([dim, 1])
        lam_1 = make_nomask([dim, dim])
        delta_0 = make_nomask([1, 1])
        delta_1 = make_nomask([dim, 1])
        mu = make_nomask([dim, 1])
        phi = make_nomask([dim, dim])
        sigma = make_nomask([dim, dim])

        # Setup some of the elements as non-zero
        # This sets up a fake model where only lambda_0 and lambda_1 are
        # estimated
        lam_0[:neqs] = ma.masked
        lam_0[-latent:] = ma.masked
        lam_1[:neqs, :neqs] = ma.masked
        lam_1[-latent:, -latent:] = ma.masked
        delta_0[:, :] = np.random.random(1)
        delta_1[:neqs] = np.random.random((neqs, 1))
        mu[:neqs] = np.random.random((neqs, 1))
        phi[:neqs, :] = np.random.random((neqs, dim))
        sigma[:, :] = np.identity(dim)

        self.mod_kwargs = {
            'yc_data': yc_data_test,
            'var_data': var_data_test,
            'k_ar': k_ar,
            'neqs': neqs,
            'mats': mats,
            'lam_0_e': lam_0,
            'lam_1_e': lam_1,
            'delta_0_e': delta_0,
            'delta_1_e': delta_1,
            'mu_e': mu,
            'phi_e': phi,
            'sigma_e': sigma,
            'latent': latent,
            'no_err': [1]
        }

        self.guess_params = np.random.random((neqs**2 + neqs + (2 * latent),)
                                            ).tolist()
        self.affine_obj = Affine(**self.mod_kwargs)
        self.affineml_obj =  AffineML(**self.mod_kwargs)
コード例 #3
0
ファイル: test_model.py プロジェクト: bartbkr/affine
class TestEstimationSupportMethods(TestCase):
    """
    Tests for support methods related to estimating models
    """
    def setUp(self):

        np.random.seed(100)

        # initialize yield curve and VAR observed factors
        yc_data_test = pa.DataFrame(np.random.random((test_size - k_ar,
                                                      nyields)))
        var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))
        mats = list(range(1, nyields + 1))

        # initialize masked arrays
        self.dim = dim = k_ar * neqs + latent
        lam_0 = make_nomask([dim, 1])
        lam_1 = make_nomask([dim, dim])
        delta_0 = make_nomask([1, 1])
        delta_1 = make_nomask([dim, 1])
        mu = make_nomask([dim, 1])
        phi = make_nomask([dim, dim])
        sigma = make_nomask([dim, dim])

        # Setup some of the elements as non-zero
        # This sets up a fake model where only lambda_0 and lambda_1 are
        # estimated
        lam_0[:neqs] = ma.masked
        lam_0[-latent:] = ma.masked
        lam_1[:neqs, :neqs] = ma.masked
        lam_1[-latent:, -latent:] = ma.masked
        delta_0[:, :] = np.random.random(1)
        delta_1[:neqs] = np.random.random((neqs, 1))
        mu[:neqs] = np.random.random((neqs, 1))
        phi[:neqs, :] = np.random.random((neqs, dim))
        sigma[:, :] = np.identity(dim)

        self.mod_kwargs = {
            'yc_data': yc_data_test,
            'var_data': var_data_test,
            'k_ar': k_ar,
            'neqs': neqs,
            'mats': mats,
            'lam_0_e': lam_0,
            'lam_1_e': lam_1,
            'delta_0_e': delta_0,
            'delta_1_e': delta_1,
            'mu_e': mu,
            'phi_e': phi,
            'sigma_e': sigma,
            'latent': latent,
            'no_err': [1]
        }

        self.guess_params = np.random.random((neqs**2 + neqs + (2 * latent),)
                                            ).tolist()
        self.affine_obj = Affine(**self.mod_kwargs)
        self.affineml_obj =  AffineML(**self.mod_kwargs)

    def test_loglike(self):
        """
        Tests if loglikelihood is calculated. If the loglikelihood is
        calculated given a set of parameters, then this test passes.
        Otherwise, it fails.
        """
        self.affineml_obj.loglike(self.guess_params)

    def test_score(self):
        """
        Tests if score of the likelihood is calculated. If the score
        calculation succeeds without error, then the test passes. Otherwise,
        the test fails.
        """
        self.affineml_obj.score(self.guess_params)

    def test_hessian(self):
        """
        Tests if hessian of the likelihood is calculated. If the hessian
        calculation succeeds without error, then the test passes. Otherwise,
        the test fails.
        """
        self.affineml_obj.hessian(self.guess_params)

    def test_std_errs(self):
        """
        Tests if standard errors are calculated. If the standard error
        calculation succeeds, then the test passes. Otherwise, the test
        fails.
        """
        self.affineml_obj.std_errs(self.guess_params)

    def test_params_to_array(self):
        """
        Tests if the params_to_array function works correctly, with and without
        returning masked arrays. In order to pass, the params_to_array function
        must return masked arrays with the masked elements filled in when the
        return_mask argument is set to True and contiguous standard numpy
        arrays when the return_mask argument is False. Otherwise, the test
        fails.
        """
        arrays_no_mask = self.affine_obj.params_to_array(self.guess_params)
        for arr in arrays_no_mask[:-1]:
            self.assertIsInstance(arr, np.ndarray)
            self.assertNotIsInstance(arr, np.ma.core.MaskedArray)
        arrays_w_mask = self.affine_obj.params_to_array(self.guess_params,
                                                        return_mask=True)
        for arr in arrays_w_mask[:-1]:
            self.assertIsInstance(arr, np.ma.core.MaskedArray)

    def test_params_to_array_inconsistent_types(self):
        """
        Tests if an assertion error is raised when parameters of different
        types are passed in
        """
        guess_params_adj = self.guess_params
        guess_params_adj[-1] = np.complex_(guess_params_adj[-1])
        self.assertRaises(AssertionError, self.affine_obj.params_to_array,
                          guess_params_adj)

    def test_params_to_array_zeromask(self):
        """
        Tests if params_to_array_zeromask function works correctly. In order to
        pass, params_to_array_zeromask must return masked arrays with the
        guess_params elements that are zero unmasked and set to zero in the
        appropriate arrays. The new guess_params array is also returned with
        those that were 0 removed. If both of these are not returned correctly,
        the test fails.
        """
        guess_params_arr = np.array(self.guess_params)
        neqs = self.affine_obj.neqs
        guess_params_arr[:neqs] = 0
        guess_params = guess_params_arr.tolist()
        guess_length = self.affine_obj._gen_guess_length()
        params_guesses = self.affine_obj.params_to_array_zeromask(guess_params)
        updated_guesses = params_guesses[-1]
        self.assertEqual(len(updated_guesses), len(guess_params) - neqs)

        # ensure that number of masked has correctly been set
        count_masked_new = ma.count_masked(params_guesses[0])
        count_masked_orig = ma.count_masked(self.affine_obj.lam_0_e)
        self.assertEqual(count_masked_new, count_masked_orig - neqs)

    def test_gen_pred_coef(self):
        """
        Tests if Python-driven gen_pred_coef function runs. If a set of
        parameter arrays are passed into the gen_pred_coef function and the
        A and B arrays are returned, then the test passes. Otherwise, the test
        fails.
        """
        params = self.affine_obj.params_to_array(self.guess_params)
        self.affine_obj.gen_pred_coef(*params)

    def test_opt_gen_pred_coef(self):
        """
        Tests if C-driven gen_pred_coef function runs. If a set of parameter
        arrays are passed into the opt_gen_pred_coef function and the A and
        B arrays are return, then the test passes. Otherwise, the test fails.
        """
        params = self.affine_obj.params_to_array(self.guess_params)
        self.affine_obj.opt_gen_pred_coef(*params)

    def test_py_C_gen_pred_coef_equal(self):
        """
        Tests if the Python-driven and C-driven gen_pred_coef functions produce
        the same result, up to a precision of 1e-14. If the gen_pred_coef and
        opt_gen_pred_coef functions produce the same result, then the test
        passes. Otherwise, the test fails.
        """
        params = self.affine_obj.params_to_array(self.guess_params)
        py_gpc = self.affine_obj.gen_pred_coef(*params)
        c_gpc = self.affine_obj.opt_gen_pred_coef(*params)
        for aix, array in enumerate(py_gpc):
            np.testing.assert_allclose(array, c_gpc[aix], rtol=1e-14)

    def test__solve_unobs(self):
        """
        Tests if the _solve_unobs function runs. If the _solve_unobs function
        runs and the latent series, likelihood jacobian, and yield errors are
        returned, then the test passes. Otherwise the test fails.
        """
        guess_params = self.guess_params
        param_arrays = self.affine_obj.params_to_array(guess_params)
        a_in, b_in = self.affine_obj.gen_pred_coef(*param_arrays)
        result = self.affineml_obj._solve_unobs(a_in=a_in, b_in=b_in,
                                                dtype=param_arrays[-1])

    def test__affine_pred(self):
        """
        Tests if the _affine_pred function runs. If the affine_pred function
        produces a list of the yields stacked in order of increasing maturity
        and is of the expected shape, the test passes. Otherwise, the test
        fails.
        """
        lat = self.affine_obj.latent
        yobs = self.affine_obj.yobs
        mats = self.affine_obj.mats
        var_data_vert_tpose = self.affine_obj.var_data_vert.T

        guess_params = self.guess_params
        latent_rows = np.random.random((lat, yobs))
        data = np.append(var_data_vert_tpose, latent_rows, axis=0)
        pred = self.affine_obj._affine_pred(data, *guess_params)
        self.assertEqual(len(pred), len(mats) * yobs)

    def test__gen_mat_list(self):
        """
        Tests if _gen_mat_list generates a length 2 tuple with a list of the
        maturities estimated without error followed by those estimated with
        error. If _gen_mat_list produces a tuple of lists of those yields
        estimates without error and then those with error, this test passes.
        Otherwise, the test fails.
        """
        no_err_mat, err_mat = self.affine_obj._gen_mat_list()
        self.assertEqual(no_err_mat, [2])
        self.assertEqual(err_mat, [1,3,4,5])
コード例 #4
0
ファイル: test_model.py プロジェクト: yangjue-han/affine
class TestEstimationSupportMethods(TestCase):
    """
    Tests for support methods related to estimating models
    """
    def setUp(self):

        np.random.seed(100)

        # initialize yield curve and VAR observed factors
        yc_data_test = pa.DataFrame(
            np.random.random((test_size - k_ar, nyields)))
        var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))
        mats = list(range(1, nyields + 1))

        # initialize masked arrays
        self.dim = dim = k_ar * neqs + latent
        lam_0 = make_nomask([dim, 1])
        lam_1 = make_nomask([dim, dim])
        delta_0 = make_nomask([1, 1])
        delta_1 = make_nomask([dim, 1])
        mu = make_nomask([dim, 1])
        phi = make_nomask([dim, dim])
        sigma = make_nomask([dim, dim])

        # Setup some of the elements as non-zero
        # This sets up a fake model where only lambda_0 and lambda_1 are
        # estimated
        lam_0[:neqs] = ma.masked
        lam_0[-latent:] = ma.masked
        lam_1[:neqs, :neqs] = ma.masked
        lam_1[-latent:, -latent:] = ma.masked
        delta_0[:, :] = np.random.random(1)
        delta_1[:neqs] = np.random.random((neqs, 1))
        mu[:neqs] = np.random.random((neqs, 1))
        phi[:neqs, :] = np.random.random((neqs, dim))
        sigma[:, :] = np.identity(dim)

        self.mod_kwargs = {
            'yc_data': yc_data_test,
            'var_data': var_data_test,
            'k_ar': k_ar,
            'neqs': neqs,
            'mats': mats,
            'lam_0_e': lam_0,
            'lam_1_e': lam_1,
            'delta_0_e': delta_0,
            'delta_1_e': delta_1,
            'mu_e': mu,
            'phi_e': phi,
            'sigma_e': sigma,
            'latent': latent,
            'no_err': [1]
        }

        self.guess_params = np.random.random(
            (neqs**2 + neqs + (2 * latent), )).tolist()
        self.affine_obj = Affine(**self.mod_kwargs)
        self.affineml_obj = AffineML(**self.mod_kwargs)

    def test_loglike(self):
        """
        Tests if loglikelihood is calculated. If the loglikelihood is
        calculated given a set of parameters, then this test passes.
        Otherwise, it fails.
        """
        self.affineml_obj.loglike(self.guess_params)

    def test_score(self):
        """
        Tests if score of the likelihood is calculated. If the score
        calculation succeeds without error, then the test passes. Otherwise,
        the test fails.
        """
        self.affineml_obj.score(self.guess_params)

    def test_hessian(self):
        """
        Tests if hessian of the likelihood is calculated. If the hessian
        calculation succeeds without error, then the test passes. Otherwise,
        the test fails.
        """
        self.affineml_obj.hessian(self.guess_params)

    def test_std_errs(self):
        """
        Tests if standard errors are calculated. If the standard error
        calculation succeeds, then the test passes. Otherwise, the test
        fails.
        """
        self.affineml_obj.std_errs(self.guess_params)

    def test_params_to_array(self):
        """
        Tests if the params_to_array function works correctly, with and without
        returning masked arrays. In order to pass, the params_to_array function
        must return masked arrays with the masked elements filled in when the
        return_mask argument is set to True and contiguous standard numpy
        arrays when the return_mask argument is False. Otherwise, the test
        fails.
        """
        arrays_no_mask = self.affine_obj.params_to_array(self.guess_params)
        for arr in arrays_no_mask[:-1]:
            self.assertIsInstance(arr, np.ndarray)
            self.assertNotIsInstance(arr, np.ma.core.MaskedArray)
        arrays_w_mask = self.affine_obj.params_to_array(self.guess_params,
                                                        return_mask=True)
        for arr in arrays_w_mask[:-1]:
            self.assertIsInstance(arr, np.ma.core.MaskedArray)

    def test_params_to_array_inconsistent_types(self):
        """
        Tests if an assertion error is raised when parameters of different
        types are passed in
        """
        guess_params_adj = self.guess_params
        guess_params_adj[-1] = np.complex_(guess_params_adj[-1])
        self.assertRaises(AssertionError, self.affine_obj.params_to_array,
                          guess_params_adj)

    def test_params_to_array_zeromask(self):
        """
        Tests if params_to_array_zeromask function works correctly. In order to
        pass, params_to_array_zeromask must return masked arrays with the
        guess_params elements that are zero unmasked and set to zero in the
        appropriate arrays. The new guess_params array is also returned with
        those that were 0 removed. If both of these are not returned correctly,
        the test fails.
        """
        guess_params_arr = np.array(self.guess_params)
        neqs = self.affine_obj.neqs
        guess_params_arr[:neqs] = 0
        guess_params = guess_params_arr.tolist()
        guess_length = self.affine_obj._gen_guess_length()
        params_guesses = self.affine_obj.params_to_array_zeromask(guess_params)
        updated_guesses = params_guesses[-1]
        self.assertEqual(len(updated_guesses), len(guess_params) - neqs)

        # ensure that number of masked has correctly been set
        count_masked_new = ma.count_masked(params_guesses[0])
        count_masked_orig = ma.count_masked(self.affine_obj.lam_0_e)
        self.assertEqual(count_masked_new, count_masked_orig - neqs)

    def test_gen_pred_coef(self):
        """
        Tests if Python-driven gen_pred_coef function runs. If a set of
        parameter arrays are passed into the gen_pred_coef function and the
        A and B arrays are returned, then the test passes. Otherwise, the test
        fails.
        """
        params = self.affine_obj.params_to_array(self.guess_params)
        self.affine_obj.gen_pred_coef(*params)

    def test_opt_gen_pred_coef(self):
        """
        Tests if C-driven gen_pred_coef function runs. If a set of parameter
        arrays are passed into the opt_gen_pred_coef function and the A and
        B arrays are return, then the test passes. Otherwise, the test fails.
        """
        params = self.affine_obj.params_to_array(self.guess_params)
        self.affine_obj.opt_gen_pred_coef(*params)

    def test_py_C_gen_pred_coef_equal(self):
        """
        Tests if the Python-driven and C-driven gen_pred_coef functions produce
        the same result, up to a precision of 1e-14. If the gen_pred_coef and
        opt_gen_pred_coef functions produce the same result, then the test
        passes. Otherwise, the test fails.
        """
        params = self.affine_obj.params_to_array(self.guess_params)
        py_gpc = self.affine_obj.gen_pred_coef(*params)
        c_gpc = self.affine_obj.opt_gen_pred_coef(*params)
        for aix, array in enumerate(py_gpc):
            np.testing.assert_allclose(array, c_gpc[aix], rtol=1e-14)

    def test__solve_unobs(self):
        """
        Tests if the _solve_unobs function runs. If the _solve_unobs function
        runs and the latent series, likelihood jacobian, and yield errors are
        returned, then the test passes. Otherwise the test fails.
        """
        guess_params = self.guess_params
        param_arrays = self.affine_obj.params_to_array(guess_params)
        a_in, b_in = self.affine_obj.gen_pred_coef(*param_arrays)
        result = self.affineml_obj._solve_unobs(a_in=a_in,
                                                b_in=b_in,
                                                dtype=param_arrays[-1])

    def test__affine_pred(self):
        """
        Tests if the _affine_pred function runs. If the affine_pred function
        produces a list of the yields stacked in order of increasing maturity
        and is of the expected shape, the test passes. Otherwise, the test
        fails.
        """
        lat = self.affine_obj.latent
        yobs = self.affine_obj.yobs
        mats = self.affine_obj.mats
        var_data_vert_tpose = self.affine_obj.var_data_vert.T

        guess_params = self.guess_params
        latent_rows = np.random.random((lat, yobs))
        data = np.append(var_data_vert_tpose, latent_rows, axis=0)
        pred = self.affine_obj._affine_pred(data, *guess_params)
        self.assertEqual(len(pred), len(mats) * yobs)

    def test__gen_mat_list(self):
        """
        Tests if _gen_mat_list generates a length 2 tuple with a list of the
        maturities estimated without error followed by those estimated with
        error. If _gen_mat_list produces a tuple of lists of those yields
        estimates without error and then those with error, this test passes.
        Otherwise, the test fails.
        """
        no_err_mat, err_mat = self.affine_obj._gen_mat_list()
        self.assertEqual(no_err_mat, [2])
        self.assertEqual(err_mat, [1, 3, 4, 5])