コード例 #1
0
ファイル: mappers_gpu.py プロジェクト: szsdk/3D-Phasing
 def l2norm(self, delta, array0):
     num = 0
     den = 0
     for k in list(delta.keys()):
         num += afnumpy.sum((delta[k] * delta[k].conj()).real)
         den += afnumpy.sum((array0[k] * array0[k].conj()).real)
     return np.sqrt(num / den)
コード例 #2
0
 def l2norm(self, delta, array0):
     num = 0
     den = 0
     for k in delta.keys():
         num += afnumpy.sum( (delta[k] * delta[k].conj()).real ) 
         den += afnumpy.sum( (array0[k] * array0[k].conj()).real ) 
     return np.sqrt(num / den)
コード例 #3
0
ファイル: test_ndarray.py プロジェクト: Brainiarc7/afnumpy
def test_sum():    
    b = numpy.random.random(3)
    a = afnumpy.array(b)
    fassert(afnumpy.sum(a), numpy.sum(b))
    fassert(afnumpy.sum(a,axis=0), numpy.sum(b,axis=0))
    fassert(afnumpy.sum(a,keepdims=True), numpy.sum(b,keepdims=True))

    b = numpy.random.random((2,3))
    a = afnumpy.array(b)
    fassert(afnumpy.sum(a), numpy.sum(b))
    fassert(afnumpy.sum(a,axis=0), numpy.sum(b,axis=0))
コード例 #4
0
ファイル: test_ndarray.py プロジェクト: syurkevi/afnumpy
def test_sum():
    b = numpy.random.random(3)
    a = afnumpy.array(b)
    fassert(afnumpy.sum(a), numpy.sum(b))
    fassert(afnumpy.sum(a, axis=0), numpy.sum(b, axis=0))
    fassert(afnumpy.sum(a, keepdims=True), numpy.sum(b, keepdims=True))

    b = numpy.random.random((2, 3))
    a = afnumpy.array(b)
    fassert(afnumpy.sum(a), numpy.sum(b))
    fassert(afnumpy.sum(a, axis=0), numpy.sum(b, axis=0))
コード例 #5
0
def radial_symetry_af2(background, inds=None, tots=None, is_fft_shifted=True):
    if (inds is None) or (tots is None):
        print('initialising...')
        i = np.fft.fftfreq(background.shape[0]) * background.shape[0]
        j = np.fft.fftfreq(background.shape[1]) * background.shape[1]
        k = np.fft.fftfreq(background.shape[2]) * background.shape[2]
        i, j, k = np.meshgrid(i, j, k, indexing='ij')
        rs = np.rint(np.sqrt(i**2 + j**2 + k**2)).astype(np.int)

        if is_fft_shifted is False:
            rs = np.fft.fftshift(rs)
        rs = afnumpy.array(rs.ravel())

        # store a list of indexes and totals
        inds = []
        tots = []
        for i in range(0, afnumpy.max(rs) + 1):
            m = (rs == i)
            j = afnumpy.where(m)
            inds.append(j)
            tots.append(afnumpy.float(afnumpy.sum(m)))

    out = background.ravel()
    for ind, tot in zip(inds[:5], tots[:5]):
        out[ind] = 2.
        #a = afnumpy.sum(background[ind])
        #out[ind] = afnumpy.sum(background[ind]) #/ tot

    return out, inds, tots
コード例 #6
0
def radial_symetry_af2(background, inds = None, tots = None, is_fft_shifted = True):
    if (inds is None) or (tots is None) :
        print 'initialising...'
        i = np.fft.fftfreq(background.shape[0]) * background.shape[0]
        j = np.fft.fftfreq(background.shape[1]) * background.shape[1]
        k = np.fft.fftfreq(background.shape[2]) * background.shape[2]
        i, j, k = np.meshgrid(i, j, k, indexing='ij')
        rs      = np.rint(np.sqrt(i**2 + j**2 + k**2)).astype(np.int)
        
        if is_fft_shifted is False :
            rs = np.fft.fftshift(rs)
        rs = afnumpy.array(rs.ravel())
        
        # store a list of indexes and totals
        inds = []
        tots = []
        for i in range(0, afnumpy.max(rs)+1):
            m = (rs == i)
            j = afnumpy.where(m)
            inds.append(j)
            tots.append(afnumpy.float(afnumpy.sum(m)))
    
    out = background.ravel()
    for ind, tot in zip(inds[:5], tots[:5]) :
        out[ind] = 2.
        #a = afnumpy.sum(background[ind])
        #out[ind] = afnumpy.sum(background[ind]) #/ tot
    
    return out, inds, tots
コード例 #7
0
def radial_symetry_af(background, rs=None, is_fft_shifted=True):
    if rs is None:
        i = np.fft.fftfreq(background.shape[0]) * background.shape[0]
        j = np.fft.fftfreq(background.shape[1]) * background.shape[1]
        k = np.fft.fftfreq(background.shape[2]) * background.shape[2]
        i, j, k = np.meshgrid(i, j, k, indexing='ij')
        rs = np.rint(np.sqrt(i**2 + j**2 + k**2)).astype(np.int)

        if is_fft_shifted is False:
            rs = np.fft.fftshift(rs)
        rs = afnumpy.array(rs)

    out = background
    for i in range(0, afnumpy.max(rs) + 1):
        m = (rs == i)
        msum = afnumpy.sum(m)
        if msum > 1:
            out[m] = afnumpy.sum(background[m]) / float(msum)

    return out, rs, None
コード例 #8
0
def radial_symetry_af(background, rs = None, is_fft_shifted = True):
    if rs is None :
        i = np.fft.fftfreq(background.shape[0]) * background.shape[0]
        j = np.fft.fftfreq(background.shape[1]) * background.shape[1]
        k = np.fft.fftfreq(background.shape[2]) * background.shape[2]
        i, j, k = np.meshgrid(i, j, k, indexing='ij')
        rs      = np.rint(np.sqrt(i**2 + j**2 + k**2)).astype(np.int)
        
        if is_fft_shifted is False :
            rs = np.fft.fftshift(rs)
        rs = afnumpy.array(rs)
    
    out = background
    for i in range(0, afnumpy.max(rs)+1):
        m     = (rs == i)
        msum  = afnumpy.sum(m)
        if msum > 1 :
            out[m] = afnumpy.sum(background[m]) / float(msum)
    
    return out, rs, None
コード例 #9
0
ファイル: mappers_gpu.py プロジェクト: szsdk/3D-Phasing
def choose_N_highest_pixels(array, N, tol=1.0e-5, maxIters=1000, support=None):
    """
    Use bisection to find the root of
    e(x) = \sum_i (array_i > x) - N

    then return (array_i > x) a boolean mask

    This is faster than using percentile (surprising)
    
    If support0 is not None then values outside the support
    are ignored. 
    """
    s0 = array.max()
    s1 = array.min()

    if support is not None:
        a = array[support > 0]
    else:
        a = array
        support = 1

    for i in range(maxIters):
        s = (s0 + s1) / 2.
        e = afnumpy.sum(a > s) - N

        if np.abs(e) < tol:
            break

        if e < 0:
            s0 = s
        else:
            s1 = s

    S = (array > s) * support
    #print 'number of pixels in support:', afnumpy.sum(support), i, s, e, type(support)
    return S
コード例 #10
0
def choose_N_highest_pixels(array, N, tol = 1.0e-5, maxIters=1000, support=None):
    """
    Use bisection to find the root of
    e(x) = \sum_i (array_i > x) - N

    then return (array_i > x) a boolean mask

    This is faster than using percentile (surprising)
    
    If support0 is not None then values outside the support
    are ignored. 
    """
    s0 = array.max()
    s1 = array.min()
    
    if support is not None :
        a = array[support > 0]
    else :
        a = array
        support = 1
    
    for i in range(maxIters):
        s = (s0 + s1) / 2.
        e = afnumpy.sum(a > s) - N
    
        if np.abs(e) < tol :
            break

        if e < 0 :
            s0 = s
        else :
            s1 = s
        
    S = (array > s) * support
    #print 'number of pixels in support:', afnumpy.sum(support), i, s, e, type(support)
    return S
コード例 #11
0
ファイル: mappers_gpu.py プロジェクト: szsdk/3D-Phasing
 def Emod(self, modes):
     M = self.Imap(modes)
     eMod = afnumpy.sum(self.mask * (afnumpy.sqrt(M) - self.amp)**2)
     eMod = afnumpy.sqrt(eMod / self.I_norm)
     return eMod
コード例 #12
0
ファイル: linalg.py プロジェクト: FilipeMaia/afnumpy
def norm(x, ord=None, axis=None, keepdims=False):
    x = asarray(x)

    # Check the default case first and handle it immediately.
    if ord is None and axis is None:
        ndim = x.ndim
        x = x.ravel(order='K')
        if isComplexType(x.dtype.type):
            sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag)
        else:
            sqnorm = dot(x, x)
        ret = sqrt(sqnorm)
        if keepdims:
            ret = ret.reshape(ndim*[1])
        return ret

    # Normalize the `axis` argument to a tuple.
    nd = x.ndim
    if axis is None:
        axis = tuple(range(nd))
    elif not isinstance(axis, tuple):
        try:
            axis = int(axis)
        except:
            raise TypeError("'axis' must be None, an integer or a tuple of integers")
        axis = (axis,)

    if len(axis) == 1:
        if ord == Inf:
            return abs(x).max(axis=axis, keepdims=keepdims)
        elif ord == -Inf:
            return abs(x).min(axis=axis, keepdims=keepdims)
        elif ord == 0:
            # Zero norm
            return (x != 0).sum(axis=axis, keepdims=keepdims)
        elif ord == 1:
            # special case for speedup
            return afnumpy.sum(abs(x), axis=axis, keepdims=keepdims)
        elif ord is None or ord == 2:
            # special case for speedup
            s = (x.conj() * x).real
            return sqrt(afnumpy.sum(s, axis=axis, keepdims=keepdims))
        else:
            try:
                ord + 1
            except TypeError:
                raise ValueError("Invalid norm order for vectors.")
            if x.dtype.type is longdouble:
                # Convert to a float type, so integer arrays give
                # float results.  Don't apply asfarray to longdouble arrays,
                # because it will downcast to float64.
                absx = abs(x)
            else:
                absx = x if isComplexType(x.dtype.type) else asfarray(x)
                if absx.dtype is x.dtype:
                    absx = abs(absx)
                else:
                    # if the type changed, we can safely overwrite absx
                    abs(absx, out=absx)
            absx **= ord
            return afnumpy.sum(absx, axis=axis, keepdims=keepdims) ** (1.0 / ord)
    elif len(axis) == 2:
        row_axis, col_axis = axis
        if not (-nd <= row_axis < nd and -nd <= col_axis < nd):
            raise ValueError('Invalid axis %r for an array with shape %r' %
                             (axis, x.shape))
        if row_axis % nd == col_axis % nd:
            raise ValueError('Duplicate axes given.')
        if ord == 2:
            ret =  _multi_svd_norm(x, row_axis, col_axis, amax)
        elif ord == -2:
            ret = _multi_svd_norm(x, row_axis, col_axis, amin)
        elif ord == 1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = afnumpy.sum(abs(x), axis=row_axis).max(axis=col_axis)
        elif ord == Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = afnumpy.sum(abs(x), axis=col_axis).max(axis=row_axis)
        elif ord == -1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = afnumpy.sum(abs(x), axis=row_axis).min(axis=col_axis)
        elif ord == -Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = afnumpy.sum(abs(x), axis=col_axis).min(axis=row_axis)
        elif ord in [None, 'fro', 'f']:
            ret = sqrt(afnumpy.sum((x.conj() * x).real, axis=axis))
        else:
            raise ValueError("Invalid norm order for matrices.")
        if keepdims:
            ret_shape = list(x.shape)
            ret_shape[axis[0]] = 1
            ret_shape[axis[1]] = 1
            ret = ret.reshape(ret_shape)
        return ret
    else:
        raise ValueError("Improper number of dimensions to norm.")
コード例 #13
0
ファイル: linalg.py プロジェクト: syurkevi/afnumpy
def norm(x, ord=None, axis=None, keepdims=False):
    x = asarray(x)

    # Check the default case first and handle it immediately.
    if ord is None and axis is None:
        ndim = x.ndim
        x = x.ravel(order='K')
        if isComplexType(x.dtype.type):
            sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag)
        else:
            sqnorm = dot(x, x)
        ret = sqrt(sqnorm)
        if keepdims:
            ret = ret.reshape(ndim * [1])
        return ret

    # Normalize the `axis` argument to a tuple.
    nd = x.ndim
    if axis is None:
        axis = tuple(range(nd))
    elif not isinstance(axis, tuple):
        try:
            axis = int(axis)
        except:
            raise TypeError(
                "'axis' must be None, an integer or a tuple of integers")
        axis = (axis, )

    if len(axis) == 1:
        if ord == Inf:
            return abs(x).max(axis=axis, keepdims=keepdims)
        elif ord == -Inf:
            return abs(x).min(axis=axis, keepdims=keepdims)
        elif ord == 0:
            # Zero norm
            return (x != 0).sum(axis=axis, keepdims=keepdims)
        elif ord == 1:
            # special case for speedup
            return afnumpy.sum(abs(x), axis=axis, keepdims=keepdims)
        elif ord is None or ord == 2:
            # special case for speedup
            s = (x.conj() * x).real
            return sqrt(afnumpy.sum(s, axis=axis, keepdims=keepdims))
        else:
            try:
                ord + 1
            except TypeError:
                raise ValueError("Invalid norm order for vectors.")
            if x.dtype.type is longdouble:
                # Convert to a float type, so integer arrays give
                # float results.  Don't apply asfarray to longdouble arrays,
                # because it will downcast to float64.
                absx = abs(x)
            else:
                absx = x if isComplexType(x.dtype.type) else asfarray(x)
                if absx.dtype is x.dtype:
                    absx = abs(absx)
                else:
                    # if the type changed, we can safely overwrite absx
                    abs(absx, out=absx)
            absx **= ord
            return afnumpy.sum(absx, axis=axis, keepdims=keepdims)**(1.0 / ord)
    elif len(axis) == 2:
        row_axis, col_axis = axis
        if not (-nd <= row_axis < nd and -nd <= col_axis < nd):
            raise ValueError('Invalid axis %r for an array with shape %r' %
                             (axis, x.shape))
        if row_axis % nd == col_axis % nd:
            raise ValueError('Duplicate axes given.')
        if ord == 2:
            ret = _multi_svd_norm(x, row_axis, col_axis, amax)
        elif ord == -2:
            ret = _multi_svd_norm(x, row_axis, col_axis, amin)
        elif ord == 1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = afnumpy.sum(abs(x), axis=row_axis).max(axis=col_axis)
        elif ord == Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = afnumpy.sum(abs(x), axis=col_axis).max(axis=row_axis)
        elif ord == -1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = afnumpy.sum(abs(x), axis=row_axis).min(axis=col_axis)
        elif ord == -Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = afnumpy.sum(abs(x), axis=col_axis).min(axis=row_axis)
        elif ord in [None, 'fro', 'f']:
            ret = sqrt(afnumpy.sum((x.conj() * x).real, axis=axis))
        else:
            raise ValueError("Invalid norm order for matrices.")
        if keepdims:
            ret_shape = list(x.shape)
            ret_shape[axis[0]] = 1
            ret_shape[axis[1]] = 1
            ret = ret.reshape(ret_shape)
        return ret
    else:
        raise ValueError("Improper number of dimensions to norm.")
コード例 #14
0
 def Emod(self, modes):
     M         = self.Imap(modes)
     eMod      = afnumpy.sum( self.mask * ( afnumpy.sqrt(M) - self.amp )**2 )
     eMod      = afnumpy.sqrt( eMod / self.I_norm )
     return eMod