コード例 #1
0
ファイル: train.py プロジェクト: Kavka1/RL
def train(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    env = gym.make(args.env)
    env.seed(args.seed)
    env_params = get_env_params(env)

    agent = DDPG_Agent(args, env_params)

    logger = SummaryWriter(log_dir='results/DDPG_{}_{}_{}'.format(
        args.env, args.seed,
        datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")))

    agent.train(env, logger)
コード例 #2
0
ファイル: evaluate.py プロジェクト: Kavka1/RL
def evaluate(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    env = gym.make(args.env)
    env.seed(args.seed)
    env_params = get_env_params(env)

    agent = DDPG_Agent(args, env_params)
    agent.load_model(remark=args.load_model_remark)

    for i in range(200):
        agent.evaluate(env, render=True)
コード例 #3
0
    def __init__(self, num_agents=2, state_size=24, action_size=2, random_seed=0, TD3=False):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.num_agents = num_agents
        self.state_size = state_size
        self.action_size = action_size

        if(TD3):
            self.agents = [TD3_Agent(state_size, action_size, i+1, random_seed) for i in range(num_agents)]
        else:
            self.agents = [DDPG_Agent(state_size, action_size, i+1, random_seed) for i in range(num_agents)]

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed=0)
コード例 #4
0
if __name__ == '__main__':
    num_agents, state_size, action_size = check_env(env)
    '''agent_1 = DDPG_Agent(state_size, action_size, num_agents,
                         lr_critic=0.0004,
                         lr_actor=0.003,
                         gamma = 0.99,
                         tau=0.003,
                         update_every=1,
                         weight_decay=0)
    init_1 =  initialize(agent_1, n_episodes=10000, max_t=3000)
    scores_agent_1 = init_1.train(1)'''

    agent_2 = DDPG_Agent(state_size,
                         action_size,
                         num_agents,
                         lr_critic=0.00001,
                         lr_actor=0.0005,
                         tau=0.05,
                         update_every=1,
                         weight_decay=0)
    init_2 = initialize(agent_2, n_episodes=10000, max_t=3000)
    scores_agent_2 = init_2.train(2)

    agent_3 = DDPG_Agent(state_size,
                         action_size,
                         num_agents,
                         lr_critic=0.00005,
                         lr_actor=0.0001,
                         tau=0.01,
                         update_every=10,
                         weight_decay=0)
    init_3 = initialize(agent_3, n_episodes=10000, max_t=3000)
コード例 #5
0
ファイル: train.py プロジェクト: mavwong/Crawler-Environment
                          display_freq=self.d_freq,
                          save_at_checkpoint=self.save_at_checkpoint)

        torch.save(self.agent.actor_local.state_dict(),     file_path + 'ddpg_{}_actor_multiple_agents.pth'.format(str(exp_number)))
        torch.save(self.agent.critic_local.state_dict(),    file_path + 'ddpg_{}_critic_multiple_agents.pth'.format(str(exp_number)))

        ts.close()
        return scores_agents



if __name__ == '__main__':
    num_agents, state_size, action_size = check_env(env)
    '''agent_1 = DDPG_Agent(state_size, action_size, num_agents,
                         lr_critic=0.00005,
                         lr_actor=0.00005,
                         tau=0.075,
                         update_every=2,
                         weight_decay=0.15)
    init_1 =  initialize(agent_1, n_episodes=10000, max_t=3000)
    scores_agent_1 = init_1.train(1)

    agent_2 = DDPG_Agent(state_size, action_size, num_agents,
                         lr_critic=0.001,
                         lr_actor=0.10,
                         tau=0.05,
                         update_every=2,
                         weight_decay=0.15)
    init_2 =  initialize(agent_2, n_episodes=10000, max_t=3000)
    scores_agent_2 = init_2.train(2)

    agent_3 = DDPG_Agent(state_size, action_size, num_agents,
コード例 #6
0
        for b in range(len(env.player.bullets)):
            if int(env.player.bullets[b].b_circle_shape.body.velocity[0]) != 0:
                space.remove(arbiter.shapes[1].body, arbiter.shapes[1])
                env.player.bullets.pop(b)
                break


pygame.init()
screen = pygame.display.set_mode((1000, 800))
clock = pygame.time.Clock()
space = pymunk.Space()
space.gravity = (0, 100)

env = Environment(space, screen)

agent = DDPG_Agent(state_space_size=3, action_space_size=1, random_seed=10)

handler = space.add_default_collision_handler()
handler.begin = coll_begin
handler.post_solve = coll_post


def train_agent(episodes):
    max_timesteps = 1000
    scores_deque = deque(maxlen=100)
    scores = []
    max_score = -np.Inf
    for episode in range(1, episodes + 1):
        state = env.reset()
        agent.reset()
        episode_reward = 0
コード例 #7
0
ファイル: crap.py プロジェクト: axe76/Rock_Pop
import torch
import numpy as np
from collections import deque
import gym
import random

from agent import DDPG_Agent

env = gym.make('BipedalWalker-v3')
env.seed(10)
agent = DDPG_Agent(state_space_size=env.observation_space.shape[0],
                   action_space_size=env.action_space.shape[0],
                   random_seed=10)


def train_agent(episodes):
    max_timesteps = 700
    scores_deque = deque(maxlen=100)
    scores = []
    max_score = -np.Inf
    for episode in range(1, episodes + 1):
        state = env.reset()
        agent.reset()
        episode_reward = 0
        for t in range(max_timesteps):
            action = agent.current_action(state)
            print(action)
            next_state, reward, done, _ = env.step(action)
            agent.step(state, action, reward, next_state, done)
            state = next_state
            episode_reward += reward