class Agent(): def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor Policy Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic Value Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) self.critic_target.model.set_weights( self.critic_local.model.get_weights()) self.actor_target.model.set_weights( self.actor_local.model.get_weights()) # Noise process self.exploration_mu = 0.0 self.exploration_theta = 0.15 #0.15 self.exploration_sigma = 0.25 #0.2 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) #Replay Memory self.buffer_size = 100000 self.batch_size = 16 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = 0.99 self.tau = 0.01 def reset_episode(self): #reset of the episode self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done): #Save experience/reward self.memory.add(self.last_state, action, reward, next_state, done) # Learn if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) #last state and action self.last_state = next_state def act(self, state): #Returns actions for given state(s) as per current policy state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] #add some noise for exploration return list(action + self.noise.sample()) def learn(self, experiences): #Update policy and value parameters using given batch of experience tuples # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape( -1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None ]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack( [e.next_state for e in experiences if e is not None]) #Get predicted next-state actions and Q values from target models #Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch( [next_states, actions_next]) #Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) #Train actor model action_gradients = np.reshape( self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) #Training function self.actor_local.train_fn([states, action_gradients, 1]) # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) def soft_update(self, local_model, target_model): local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) #Local model parameters and target model parameters should have the same size assert len(local_weights) == len(target_weights) new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights)
class DDPG(): """Reinforcement Learning agent that learns using DDPG.""" def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights(self.critic_local.model.get_weights()) self.actor_target.model.set_weights(self.actor_local.model.get_weights()) # Noise process self.exploration_mu = 0 self.exploration_theta = 0.15 self.exploration_sigma = 0.2 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 100000 self.batch_size = 64 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = 0.9 # discount factor self.tau = 0.001 # for soft update of target parameters self.total_reward = 0 self.count = 0 self.best_score = -np.inf self.score = 0 def reset_episode(self): self.total_reward = 0 self.count = 0 self.score = 0 self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done): self.total_reward += reward self.count += 1 # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) # Roll over last state and action self.last_state = next_state def act(self, states): """Returns actions for given state(s) as per current policy.""" states = np.reshape(states, [-1, self.state_size]) action = self.actor_local.model.predict(states)[0] return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences): """Update policy and value parameters using given batch of experience tuples.""" self.score = self.total_reward / float(self.count) if self.count else 0.0 if self.score > self.best_score: self.best_score = self.score # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape(-1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack([e.next_state for e in experiences if e is not None]) # Get predicted next-state actions and Q values from target models # Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch([next_states, actions_next]) # Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) # Train actor model (local) action_gradients = np.reshape(self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) def soft_update(self, local_model, target_model): """Soft update model parameters.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) assert len(local_weights) == len(target_weights), "Local and target model parameters must have the same size" new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights)
class Agent(object): def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high #Parames self.MU = 0 self.THETA = 0.15 self.SIGMA = 0.10 self.GAMMA = 0.99 self.TAU = 0.001 self.BATCHS = 256 self.MAX_REWARD = -999999999 #Actor Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) #init self.actor_target.model.set_weights( self.actor_local.model.get_weights()) #Critic Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) #init self.critic_target.model.set_weights( self.critic_local.model.get_weights()) #Noise process self.noiseObj = Noise(self.action_size, self.MU, self.THETA, self.SIGMA) #Replay memory self.replayObj = Replay(self.BATCHS) def reset_episode(self): self.count = 0 self.total_reward = 0 self.noiseObj.reset() state = self.task.reset() self.last_state = state return (state) def step(self, action, reward, next_state, done): self.replayObj.add(self.last_state, action, reward, next_state, done) self.total_reward += reward self.count += 1 if self.total_reward > self.MAX_REWARD: self.MAX_REWARD = self.total_reward if len(self.replayObj) > self.BATCHS: experiences = self.replayObj.sample() self.learn(experiences) self.last_state = next_state def act(self, states): action = self.actor_local.model.predict( np.reshape(states, [-1, self.state_size]))[0] return (list(action + self.noiseObj.sample())) def learn(self, experiences): states = np.array([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).reshape(-1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None]).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).reshape(-1, 1) next_state = np.array( [e.next_state for e in experiences if e is not None]) #获取预测next_state的actions 和目标模型的Q值 next_actions = self.actor_target.model.predict_on_batch(next_state) next_Q_targets = self.critic_target.model.predict_on_batch( [next_state, next_actions]) Q_targets = rewards + self.GAMMA * next_Q_targets * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) #训练actor 模型 action_gradients = np.reshape( self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) self.update(self.critic_local.model, self.critic_target.model) self.update(self.actor_local.model, self.actor_target.model) def update(self, local_model, target_model): local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) new_weights = self.TAU * local_weights + (1 - self.TAU) * target_weights target_model.set_weights(new_weights)