コード例 #1
0
ファイル: simple.py プロジェクト: IDSIA/NewTechnoWar
    def placeFigures(self, board: GameBoard, state: GameState) -> None:
        """
        Uses the placeFigures() method of the GreedyAgent class.

        :param board:   board of the game
        :param state:   the current state
        """
        # TODO: find a better idea?
        ga = GreedyAgent(self.team)
        ga.placeFigures(board, state)
コード例 #2
0
    def placeFigures(self, board: GameBoard, state: GameState) -> None:
        """
        Uses GreedyAgent's placer() method.

        :param board:   board of the game
        :param state:   the current state
        """

        # TODO: find a better placer
        ga = GreedyAgent(self.team)
        ga.placeFigures(board, state)
コード例 #3
0
ファイル: tests.py プロジェクト: po40361/cardjitsu_AI_project
 def pick_low_num_for_streak(self):
     greedyAgent = GreedyAgent("greedy")
     greedyAgent.cards = [(2, "Fire"), (3, "Ice"), (4, "Water")]
     greedyAgent.pickCard()
     greedyAgent.accumulatedCards["Water"] += 1
     greedyAgent.cards.append((1, "Water"))
     greedyAgent.cards.append((0, "Water"))
     greedyAgent.pickCard()
     self.assertEqual(greedyAgent.playedCard, (1, "Water"))
     greedyAgent.accumulatedCards["Water"] += 1
     greedyAgent.pickCard()
     self.assertEqual(greedyAgent.playedCard, (0, "Water"))
コード例 #4
0
def start_demo_game(n_agents: int, game_duration: int, board_width: int, board_height: int,
                    n_fruits: int, use_keyboard_listener: bool):
    players = [KeyboardPlayer(use_keyboard_listener=use_keyboard_listener)] + [GreedyAgent() for _ in range(n_agents - 1)]
    start_game_with_players(players,
                            game_duration,
                            board_width,
                            board_height,
                            n_fruits,
                            fast_run=not use_keyboard_listener)
コード例 #5
0
    def agent(self, team, seed) -> Agent:
        if self.kind == 'gre':
            return GreedyAgent(team, seed=seed)
        if self.kind == 'cls':
            return ClassifierAgent(team, self.filename, seed=seed)
        if self.kind == 'reg':
            return RegressionAgent(team, self.filename, seed=seed)

        return RandomAgent(team)
コード例 #6
0
def start_part_e(n_agents: int, game_duration: int, board_width: int, board_height: int,
                    n_fruits: int, fast_run: bool, graphics_off: bool):
    players = [AlphaBetaAgent()] + [GreedyAgent() for _ in range(n_agents - 1)]
    start_game_with_players(players,
                            game_duration,
                            board_width,
                            board_height,
                            n_fruits,
                            fast_run=fast_run,
                            graphics_off=graphics_off)
コード例 #7
0
ファイル: main.py プロジェクト: delmaler/MultiSnake-AI
 def get_player(p: str):
     if p == 'KeyboardPlayer':
         return KeyboardPlayer(use_keyboard_listener=use_keyboard_listener)
     elif p == 'GreedyAgent':
         return GreedyAgent()
     elif p == 'BetterGreedyAgent':
         return BetterGreedyAgent()
     elif p == 'MinimaxAgent':
         return MinimaxAgent()
     elif p == 'AlphaBetaAgent':
         return AlphaBetaAgent()
     elif p == 'TournamentAgent':
         return TournamentAgent()
コード例 #8
0
 def parse_agents(self):
     agentsTemp = self.agents
     self.agents = {}
     # iterate through agents
     for agent in agentsTemp:
         # pick a random spawn location
         x = random.randrange(0, self.windowWidth, 40)
         y = random.randrange(0, self.windowHeight, 40)
         # initialize agent
         if agent == "closestcoin":
             self.agents[agent] = ClosestCoinAgent(8, 2, self.coins)
             continue
         if agent == "density":
             self.agents[agent] = DensityAgent(9, 2, self.coins)
             continue
         if agent == "greedy":
             self.agents[agent] = GreedyAgent(10, 2, self.coins)
             continue
コード例 #9
0
ucb_agent_score = np.zeros((Episodes, GameSteps), np.float32)
best_agent_score = np.zeros((Episodes, GameSteps), np.float32)
#Average Best Action
random_agent_best_prop = np.zeros((Episodes, GameSteps), np.float32)
greedy_agent_best_prop = np.zeros((Episodes, GameSteps), np.float32)
egreedy_agent_best_prop = np.zeros((Episodes, GameSteps), np.float32)
egreedy_agent2_best_prop = np.zeros((Episodes, GameSteps), np.float32)
ogreedy_agent_best_prop = np.zeros((Episodes, GameSteps), np.float32)
ucb_agent_best_prop = np.zeros((Episodes, GameSteps), np.float32)

for episode in range(Episodes):
    env = MultiArm_Bandit(N, episode)
    best_action = np.argmax(env.bandit_config)

    random_agent = RandomAgent(N)
    greedy_agent = GreedyAgent(N)
    egreedy_agent = EGreedyAgent(N, 0.1)
    egreedy_agent2 = EGreedyAgent(N, 0.01)
    ogreedy_agent = OptimisticGreedyAgent(N)
    ucb_agent = UpperBoundAgent(N, 2)

    for i in range(ExploreSteps):
        action = np.random.choice(N)
        reward = env.step(action)
        random_agent.update_estimation(action, reward)
        greedy_agent.update_estimation(action, reward)
        egreedy_agent.update_estimation(action, reward)
        egreedy_agent2.update_estimation(action, reward)
        ogreedy_agent.update_estimation(action, reward)
        ucb_agent.update_estimation(action, reward)
コード例 #10
0
            p1.accumulatedCards[p1.playedCard[1]] += 1
        if roundWinner == p2:
            p2.accumulatedCards[p2.playedCard[1]] += 1

        if gameState.judgeGameOver(p1, p2) == p1:
            return p1.name
            
        elif gameState.judgeGameOver(p1, p2) == p2:
            return p2.name

        p1.cards.append(d1.generateRandomCard())
        p2.cards.append(d1.generateRandomCard())


if __name__ == "__main__":
    now = datetime.now()
    dateString = now.strftime("%d-%m-%Y %HH %MM %SS.txt")

    sys.setrecursionlimit(10000000)
    # p1 = ApproximateQLearningAgent("aqlearn")
    p2 = GreedyAgent("Greedy")
    p1 = RandomAgent("random")
    games = 10000

    wins = 0
    for i in range(0, games):
        if runGame(p1, p2) == "Greedy":
            wins += 1
    print(p2.name + " won", str(wins), "out of", games, "games")
        
コード例 #11
0
ファイル: main.py プロジェクト: IDSIA/NewTechnoWar
                               seed)
    blue = RegressionMultiAgent(BLUE,
                                'models/Junction_blue_attack.joblib',
                                'models/Junction_blue_move.joblib',
                                'models/Junction_blue_pass.joblib',
                                seed)

    # agents that use classifiers or regressors just need one model
    red = ClassifierAgent(RED, 'models/Junction_cls_red.joblib', seed=seed)
    blue = ClassifierAgent(BLUE, 'models/Junction_cls_blue.joblib', seed=seed)

    red = RegressionAgent(RED, 'models/Junction_reg_red.joblib', seed=seed)
    blue = RegressionAgent(BLUE, 'models/Junction_reg_blue.joblib', seed=seed)

    # greedy agents instead don't require models
    red = GreedyAgent(RED, seed=seed)
    blue = GreedyAgent(BLUE, seed=seed)

    # different agents can have different set of parameters
    red = AlphaBetaFast1Agent(RED, maxDepth=3)
    blue = AlphaBetaFast1Agent(BLUE, maxDepth=3)

    # the MatchManager is the object that is in charge of control the evolution of a game
    mm = MatchManager('', red, blue, board, state, seed=seed)

    # there is a dedicated method to play the full game
    mm.play()

    # at the end it is possible to collect some information from the MatchManager object, like the winner
    logger.info('winner: ', mm.winner)
コード例 #12
0
ファイル: tests.py プロジェクト: po40361/cardjitsu_AI_project
 def pick_random(self):
     greedyAgent = GreedyAgent("greedy")
     greedyAgent.cards = [(3, "Fire"), (3, "Ice"), (3, "Water")]
コード例 #13
0
ファイル: tests.py プロジェクト: po40361/cardjitsu_AI_project
 def pick_highest_num_test(self):
     greedyAgent = GreedyAgent("greedy")
     greedyAgent.cards = [(2, "Fire"), (3, "Ice"), (4, "Water")]
     greedyAgent.pickCard()
     self.assertEqual(greedyAgent.playedCard, (4, "Water"))
コード例 #14
0
enabled = {"greedy": True, "random": False, "multib": False, "thomp": False}
# learnrates = [0.01] #[0.05, 0.04, 0.03, 0.02, 0.01, 0.005]
# regulizers = [1e-3] #[0.01, 0.005, 0.001, 0.0005, 0.0001]
n_exp = 1
# priors = ThompsonLogisticAgent.parse_priors([os.path.join('agents', file) for file in os.listdir('agents') if 'thomp(0.0100,0.0010)' in file])

if __name__ == "__main__":
    now = time.time()
    experiments = []
    for runid in range(10001, 10011):
        # runid = random.choice(range(10000))
        str_runid = str(runid).zfill(4)
        # Greedy agent
        if enabled["greedy"]:
            greedy_name = "greedy_runid_" + str(runid).zfill(4)
            greedy_agent = GreedyAgent(greedy_name)
            exp_greedy = Experiment(greedy_agent, greedy_name, run_idx=[runid])
            experiments.append(exp_greedy)
            exp_greedy.start()
        # Random agent
        # if enabled["random"]:
        #     random_name = "random_runid_" + str(runid).zfill(4)
        #     random_agent = RandomAgent(random_name)
        #     exp_random = Experiment(random_agent, random_name, run_idx=[runid])
        #     exp_random.start()
        # Multi beta agent
        # if enabled["multib"]:
        #     multib_name = "multibeta_runid_" + str(runid).zfill(4)
        #     multib_agent = MultiBetaAgent(multib_name)
        #     exp_multib = Experiment(multib_agent, multib_name, run_idx=[runid])
        #     experiments.append(exp_multib)
コード例 #15
0
def start_part_g(n_agents: int, game_duration: int, board_width: int, board_height: int,
                 n_fruits: int, fast_run: bool, graphics_off: bool):

    length_1 = [0]
    time_1 = [0]
    for i in range(10):
        players = [GreedyAgent() for _ in range(n_agents)]
        start_game_with_players(players,
                                game_duration,
                                board_width,
                                board_height,
                                n_fruits,
                                fast_run=fast_run,
                                graphics_off=graphics_off,
                                length=length_1,
                                time=time_1)

    print(length_1[0]/10, time_1[0]/10)
    length_2 = [0]
    time_2 = [0]
    for i in range(10):
        players = [BetterGreedyAgent()] + [GreedyAgent() for _ in range(n_agents - 1)]
        start_game_with_players(players,
                                game_duration,
                                board_width,
                                board_height,
                                n_fruits,
                                fast_run=fast_run,
                                graphics_off=graphics_off,
                                length=length_2,
                                time=time_2)
    print(length_2[0] / 10, time_2[0] / 10)
    length_3 = [[0], [0], [0]]
    time_3 = [[0], [0], [0]]
    for depth in [2, 4, 6]:
        for i in range(10):
            print(depth)
            players = [MinimaxAgent()] + [GreedyAgent() for _ in range(n_agents - 1)]
            start_game_with_players(players,
                                    game_duration,
                                    board_width,
                                    board_height,
                                    n_fruits,
                                    fast_run=fast_run,
                                    graphics_off=graphics_off,
                                    depth=depth,
                                    length=length_3[int(depth / 2 - 1)],
                                    time=time_3[int(depth / 2 - 1)])

    print(length_3[1][0] / 10, time_3[1][0] / 10)
    length_4 = [[0], [0], [0]]
    time_4 = [[0], [0], [0]]
    for depth in [2, 4, 6]:
        for i in range(10):
            players = [AlphaBetaAgent()] + [GreedyAgent() for _ in range(n_agents - 1)]
            start_game_with_players(players,
                                    game_duration,
                                    board_width,
                                    board_height,
                                    n_fruits,
                                    fast_run=fast_run,
                                    graphics_off=graphics_off,
                                    depth=depth,
                                    length=length_4[int(depth / 2 - 1)],
                                    time=time_4[int(depth / 2 - 1)])

    with open('experiment.csv', 'w') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerow(['GreedyAgent', length_1[0] / 10, time_1[0] / 10])
        writer.writerow(['betterAgent', length_2[0] / 10, time_2[0] / 10])
        for i in range(3):
            writer.writerow(['MinMaxAgent', 2 * i, length_3[i][0] / 10, time_3[i][0] / 10])
        for i in range(3):
            writer.writerow(['AlphaBetaAgent', 2 * i, length_4[i][0] / 10, time_4[i][0] / 10])
コード例 #16
0
import sys
from othello import Othello
from agents import MinimaxAgent, GreedyAgent, AlphaBetaAgent
import numpy as np
import time

print('Welcome to Reversi!')

epoch = 0
maxEpoch = 20
game = Othello()

game.resetBoard()
tile1, tile2 = 'O', 'X'
agent1 = GreedyAgent(tile1, game)
# agent2 = GreedyAgent(tile2, game)
# agent1 = MinimaxAgent(tile1, game, 2)
# agent2 = MinimaxAgent(tile2, game, 2)
# agent1 = AlphaBetaAgent(tile1, game, 4)
agent2 = AlphaBetaAgent(tile2, game, 4)
render = False
score1 = []
score2 = []

start = time.time()
#Start a new round
while True:
    game.resetBoard()
    roundStartTurn = 'player'
    while True:
        if roundStartTurn == 'computer':