def feed_backwards(self, x: np.ndarray) -> np.ndarray: v = np.zeros((1, 28 * 28)) v[:, 0:10] = x x = homogenize_vector(v) for m in self.R: x[:, :-1] = self.ai(np.clip(x[:, :-1], 0.000000001, 0.999999999)) x = np.matmul(x, m) return x[:, :-1]
def feed_backwards(self, x: np.ndarray) -> np.ndarray: x = homogenize_vector(x) for m in self.R: x[:, :-1] = self.ai(np.clip(x[:, :-1], 0.000000001, 0.999999999)) x = np.matmul(x, m) return x[:, :-1]
def feed_forward(self, x: np.ndarray) -> np.ndarray: x = homogenize_vector(x) for m in self.M: x = np.matmul(x, m) x[:, :-1] = self.a(np.clip(x[:, :-1], -500, 500)) return x[:, :-1]
def feed_backwards(self, x: np.ndarray) -> np.ndarray: x = homogenize_vector(self.ai(np.clip(x, 0.000000001, 0.999999999))) x = np.matmul(x, self.R) return x[:, :-1]
def feed_backwards(self, x: np.ndarray) -> np.ndarray: x = homogenize_vector(x) x = np.matmul(x, self.R) return x[:, :-1]
def feed_forward(self, x: np.ndarray) -> np.ndarray: x = homogenize_vector(x) x = np.matmul(x, self.M) return x[:, :-1]