def __init__(self, standardize=True, family="gaussian", link="family_default", solver="AUTO", tweedieVariancePower=0.0, tweedieLinkPower=0.0, alphaValue=None, lambdaValue=None, missingValuesHandling="MeanImputation", prior=-1.0, lambdaSearch=False, nlambdas=-1, nonNegative=False, exactLambdas=False, lambdaMinRatio=-1.0, maxIterations=-1, intercept=True, betaEpsilon=1e-4, objectiveEpsilon=-1.0, gradientEpsilon=-1.0, objReg=-1.0, computePValues=False, removeCollinearCols=False, interactions=None, interactionPairs=None, earlyStopping=True, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, **DeprecatedParams): Initializer.load_sparkling_jar() super(H2OGLM, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2OGLM", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) Utils.propagateValueFromDeprecatedProperty(kwargs, "alpha", "alphaValue") Utils.propagateValueFromDeprecatedProperty(kwargs, "lambda_", "lambdaValue") self._set(**kwargs)
def __init__(self, quietMode=True, ntrees=50, nEstimators=0, maxDepth=6, minRows=1.0, minChildWeight=1.0, learnRate=0.3, eta=0.3, learnRateAnnealing=1.0, sampleRate=1.0, subsample=1.0, colSampleRate=1.0, colSampleByLevel=1.0, colSampleRatePerTree=1.0, colSampleByTree=1.0, maxAbsLeafnodePred=0.0, maxDeltaStep=0.0, scoreTreeInterval=0, initialScoreInterval=4000, scoreInterval=4000, minSplitImprovement=0.0, gamma=0.0, nthread=-1, maxBins=256, maxLeaves=0, minSumHessianInLeaf=100.0, minDataInLeaf=0.0, treeMethod="auto", growPolicy="depthwise", booster="gbtree", dmatrixType="auto", regLambda=0.0, regAlpha=0.0, sampleType="uniform", normalizeType="tree", rateDrop=0.0, oneDrop=False, skipDrop=0.0, gpuId=0, backend="auto", modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, **DeprecatedArgs): Initializer.load_sparkling_jar() super(H2OXGBoost, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2OXGBoost", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) Utils.propagateValueFromDeprecatedProperty(kwargs, "colsampleBytree", "colSampleByTree") self._set(**kwargs)