def test__get_target_info_regressor(): np.random.seed(123) y = np.random.randn(100) result = OutSamplerTransformer._get_target_info(y, False) assert result["multi_output"] == False result = OutSamplerTransformer._get_target_info(y.reshape((50, 2)), False) assert result["multi_output"] == True assert result["y_names"] == ["output0", "output1"] result = OutSamplerTransformer._get_target_info( pd.DataFrame(y.reshape((50, 2)), columns=["tA", "tB"]), False) assert result["multi_output"] == True assert result["y_names"] == ["tA", "tB"]
def test__get_target_info_classifier(): np.random.seed(123) y = 1 * (np.random.randn(100) > 0) result = OutSamplerTransformer._get_target_info(y, True) assert result["multi_output"] == False assert result["nby"] == 2 result = OutSamplerTransformer._get_target_info(y.reshape((50, 2)), True) assert result["multi_output"] == True assert result["y_names"] == ["output0", "output1"] assert result["nby"] == [2, 2] result = OutSamplerTransformer._get_target_info( pd.DataFrame(y.reshape((50, 2)), columns=["tA", "tB"]), True) assert result["multi_output"] == True assert result["y_names"] == ["tA", "tB"] assert result["nby"] == [2, 2] y = np.array(["a", "b", "c"])[np.random.randint(0, 3, 100)] result = OutSamplerTransformer._get_target_info(y, True) assert result["multi_output"] == False assert result["nby"] == 3 result = OutSamplerTransformer._get_target_info(y.reshape((50, 2)), True) assert result["multi_output"] == True assert result["y_names"] == ["output0", "output1"] assert result["nby"] == [3, 3] result = OutSamplerTransformer._get_target_info( pd.DataFrame(y.reshape((50, 2)), columns=["tA", "tB"]), True) assert result["multi_output"] == True assert result["y_names"] == ["tA", "tB"] assert result["nby"] == [3, 3]