コード例 #1
0
def custom_aligned_metrics_streamer(requested_runs: List[AlignedRunIn], x_axis: str, repo: 'Repo') -> bytes:
    for run_data in requested_runs:
        run_hash = run_data.run_id
        requested_traces = run_data.traces
        run = Run(run_hash, repo=repo, read_only=True)

        traces_list = []
        for trace_data in requested_traces:
            context = Context(trace_data.context)
            trace = run.get_metric(name=trace_data.name,
                                   context=context)
            x_axis_trace = run.get_metric(name=x_axis,
                                          context=context)
            if not (trace and x_axis_trace):
                continue

            _slice = slice(*trace_data.slice)
            iters = trace.values.sparse_numpy()[0]
            sliced_iters = sliced_np_array(iters, _slice)
            x_axis_iters, x_axis_values = collect_x_axis_data(x_axis_trace, sliced_iters)
            traces_list.append({
                'name': trace.name,
                'context': trace.context.to_dict(),
                'x_axis_values': x_axis_values,
                'x_axis_iters': x_axis_iters,
            })
        run_dict = {
            run_hash: traces_list
        }
        encoded_tree = encode_tree(run_dict)
        yield collect_run_streamable_data(encoded_tree)
コード例 #2
0
def requested_figure_object_traces_streamer(
        run: Run, requested_traces: List[TraceBase], rec_range, rec_num: int = 50
) -> List[dict]:
    for requested_trace in requested_traces:
        trace_name = requested_trace.name
        context = Context(requested_trace.context)
        trace = run.get_figure_sequence(name=trace_name, context=context)
        if not trace:
            continue

        record_range_missing = rec_range.start is None or rec_range.stop is None
        if record_range_missing:
            rec_range = IndexRange(trace.first_step(), trace.last_step() + 1)

        steps = []
        values = []
        steps_vals = trace.values.items_in_range(
            rec_range.start, rec_range.stop, rec_num
        )
        for step, val in steps_vals:
            steps.append(step)
            values.append(preparer(val, trace, step, decode=True))

        trace_dict = {
            'name': trace.name,
            'context': trace.context.to_dict(),
            'values': values,
            'iters': steps,
            'record_range': (trace.first_step(), trace.last_step() + 1),
        }
        encoded_tree = encode_tree(trace_dict)
        yield collect_run_streamable_data(encoded_tree)
コード例 #3
0
        def message_stream_generator():
            header = rpc_messages.InstructionRequest(
                header=rpc_messages.RequestHeader(version='0.1',
                                                  handler=resource,
                                                  client_uri=self.uri,
                                                  method_name=method))
            yield header

            stream = pack_stream(encode_tree(args))
            for chunk in stream:
                yield rpc_messages.InstructionRequest(message=chunk)
コード例 #4
0
ファイル: utils.py プロジェクト: admariner/aim
async def metric_search_result_streamer(traces: QueryTraceCollection,
                                        steps_num: int,
                                        x_axis: Optional[str]) -> bytes:
    for run_trace_collection in traces.iter_runs():
        run = None
        traces_list = []
        for trace in run_trace_collection.iter():
            if not run:
                run = run_trace_collection.run
            iters, values = trace.values.sparse_numpy()
            num_records = len(values)
            step = (num_records // steps_num) or 1
            _slice = slice(0, num_records, step)
            sliced_iters = sliced_np_array(iters, _slice)
            x_axis_trace = run.get_trace(x_axis,
                                         trace.context) if x_axis else None
            x_axis_iters, x_axis_values = collect_x_axis_data(
                x_axis_trace, sliced_iters)

            traces_list.append({
                'metric_name':
                trace.name,
                'context':
                trace.context.to_dict(),
                'slice': [0, num_records, step],
                'values':
                numpy_to_encodable(sliced_np_array(values, _slice)),
                'iters':
                numpy_to_encodable(sliced_iters),
                'epochs':
                numpy_to_encodable(
                    sliced_np_array(trace.epochs.values_numpy(), _slice)),
                'timestamps':
                numpy_to_encodable(
                    sliced_np_array(trace.timestamps.values_numpy(), _slice)),
                'x_axis_values':
                x_axis_values,
                'x_axis_iters':
                x_axis_iters,
            })

        if run:
            run_dict = {
                run.hashname: {
                    'params': run[...],
                    'traces': traces_list,
                    'props': get_run_props(run)
                }
            }

            encoded_tree = encode_tree(run_dict)
            yield collect_run_streamable_data(encoded_tree)
コード例 #5
0
ファイル: utils.py プロジェクト: admariner/aim
async def run_search_result_streamer(runs: QueryRunTraceCollection) -> bytes:
    for run_trace_collection in runs.iter_runs():
        run = run_trace_collection.run
        run_dict = {
            run.hashname: {
                'params': run[...],
                'traces': run.get_traces_overview(),
                'props': get_run_props(run)
            }
        }

        encoded_tree = encode_tree(run_dict)
        yield collect_run_streamable_data(encoded_tree)
コード例 #6
0
def requested_image_traces_streamer(run: Run,
                                    requested_traces: List[TraceBase],
                                    rec_range, idx_range,
                                    rec_num: int = 50, idx_num: int = 5) -> List[dict]:
    for requested_trace in requested_traces:
        trace_name = requested_trace.name
        context = Context(requested_trace.context)
        trace = run.get_image_sequence(name=trace_name, context=context)
        if not trace:
            continue

        record_range_missing = rec_range.start is None or rec_range.stop is None
        if record_range_missing:
            rec_range = IndexRange(trace.first_step(), trace.last_step() + 1)
        index_range_missing = idx_range.start is None or idx_range.stop is None
        if index_range_missing:
            idx_range = IndexRange(0, trace.record_length() or 1)

        rec_length = trace.record_length() or 1
        idx_step = rec_length // idx_num or 1
        idx_slice = slice(idx_range.start, idx_range.stop, idx_step)

        steps_vals = trace.values.items_in_range(rec_range.start, rec_range.stop, rec_num)
        steps = []
        values = []
        for step, val in steps_vals:
            steps.append(step)
            if isinstance(val, list):
                values.append(
                    img_collection_record_to_encodable(sliced_custom_object_record(val, idx_slice), trace, step)
                )
            elif idx_slice.start == 0:
                values.append(img_record_to_encodable(val, trace, step))
            else:
                values.append([])

        trace_dict = {
            'record_range': (trace.first_step(), trace.last_step() + 1),
            'index_range': (0, rec_length),
            'name': trace.name,
            'context': trace.context.to_dict(),
            'values': values,
            'iters': steps,
        }
        encoded_tree = encode_tree(trace_dict)
        yield collect_run_streamable_data(encoded_tree)
コード例 #7
0
    def _pack_run_data(run_: Run, traces_: list):
        _rec_range = (
            trcs_rec_range if record_range_missing or calc_total_ranges else rec_range
        )

        run_dict = {
            run_.hash: {
                'ranges': {
                    'record_range': [_rec_range.start, _rec_range.stop],
                    'record_slice': [rec_slice.start, rec_slice.stop, rec_slice.step],
                },
                'params': run_.get(...),
                'traces': traces_,
                'props': get_run_props(run_),
            }
        }
        encoded_tree = encode_tree(run_dict)
        return collect_run_streamable_data(encoded_tree)
コード例 #8
0
def run_search_result_streamer(runs: SequenceCollection, limit: int) -> bytes:
    run_count = 0
    for run_trace_collection in runs.iter_runs():
        run = run_trace_collection.run
        run_dict = {
            run.hash: {
                'params': run.get(...),
                'traces': run.collect_sequence_info(sequence_types='metric'),
                'props': get_run_props(run)
            }
        }

        encoded_tree = encode_tree(run_dict)
        yield collect_run_streamable_data(encoded_tree)

        run_count += 1
        if limit and run_count >= limit:
            break
コード例 #9
0
    def set(
        self,
        path: Union[AimObjectKey, AimObjectPath],
        value: AimObject,
        strict: bool = True
    ):
        if path == Ellipsis:
            path = ()
        if not isinstance(path, (tuple, list)):
            path = (path,)

        batch = self.container.batch()
        encoded_path = E.encode_path(path)
        self.container.delete_range(encoded_path, encoded_path + b'\xff',
                                    store_batch=batch)
        for key, val in treeutils.encode_tree(value, strict=strict):
            self.container.set(encoded_path + key, val,
                               store_batch=batch)
        self.container.commit(batch)
コード例 #10
0
def audios_batch_result_streamer(uri_batch: List[str], repo: 'Repo'):
    uri_service = URIService(repo=repo)
    batch_iterator = uri_service.request_batch(uri_batch=uri_batch)
    for it in batch_iterator:
        yield collect_run_streamable_data(encode_tree(it))