def test_collect_symbols(self): expression = "(A AND NOT B) => B <=> NOT C OR D => E" parser = PLParser() root_term = parser.parse(expression) sc = SymbolsCollector() sc.collect_symbols(root_term) result_symbols = sc.symbols expected_symbols = ["A", "B", "C", "D", "E"] self.assertSameElements(expected_symbols, result_symbols)
def tt_entails(self, knowledge_base, alpha): kb_sentence = knowledge_base.as_sentence() query_sentence = PLParser().parse(alpha) collector = SymbolsCollector() kb_symbols = collector.collect_symbols(kb_sentence) query_symbols = collector.collect_symbols(query_sentence) # symbols <- a list of proposition symbols in KB and alpha symbols_list = list(kb_symbols.union(query_symbols)) # return TT-Check-All(KB, alpha, symbols, []) return self.tt_check_all(kb_sentence, query_sentence, symbols_list, Model())
def __init__(self, root_term): self.head = None self.premise_symbols = None if root_term.type == TokenTypes.IDENTIFIER: self.head = root_term self.premise_symbols = [] elif root_term.type != TokenTypes.IMPLICATION: raise ValueError("Sentence " + str(root_term) + " isn't a horn clause") else: self.head = root_term.children[1] collector = SymbolsCollector() premise_expression = root_term.children[0] self.premise_symbols = [SymbolTerm(name) for name in collector.collect_symbols(premise_expression)]
def find_model_for(self, sentence, number_of_flips, probability_of_random_walk): model = Model() cnf_sentence = CNFTransformer().transform(sentence) clauses = CNFClauseGatherer().collect(cnf_sentence) symbols = SymbolsCollector().collect_symbols(sentence) # model <- a random assignment of true/false to the symbols in clauses for symbol in symbols: model = model.extend(symbol, randbool()) # for i = 1 to max_flips do for i in range(number_of_flips): # if model satisfies clauses then return model if self._all_clauses_satisfied(clauses, model): return model # clause <- a randomly selected clause from clauses that is false in model symbols_list = list( self._get_symbols_of_randomly_selected_false_clause( clauses, model)) # with probability p flip the value in model of a randomly selected symbol from clause if random.random() >= probability_of_random_walk: symbol = select_randomly_from_list(symbols_list) # else flip whichever symbol in clause maximizes the number of satisfied clauses else: symbol = self._get_symbol_whose_flip_maximises_satisfied_clauses( clauses, model, symbols_list) model.flip(symbol) return None
def _get_symbols_of_randomly_selected_false_clause(self, clauses, model): false_clauses = [] for clause in clauses: if not model.is_true(clause): false_clauses.append(clause) random_false_clause = select_randomly_from_list(false_clauses) return SymbolsCollector().collect_symbols(random_false_clause)
def dpll_satisfiable(self, sentence, model=Model()): cnf_sentence = CNFTransformer().transform(sentence) # clauses <- the set of clauses in the CNF representation of s clauses = CNFClauseGatherer().collect(cnf_sentence) # symbols <- a list of the proposition symbols in s symbols = SymbolsCollector().collect_symbols(sentence) # return DPLL(clauses, symbols, []) return self._dpll(clauses, symbols, model)
def __init__(self, root_term): self.head = None self.premise_symbols = None if root_term.type == TokenTypes.IDENTIFIER: self.head = root_term self.premise_symbols = [] elif root_term.type != TokenTypes.IMPLICATION: raise ValueError("Sentence " + str(root_term) + " isn't a horn clause") else: self.head = root_term.children[1] collector = SymbolsCollector() premise_expression = root_term.children[0] self.premise_symbols = [ SymbolTerm(name) for name in collector.collect_symbols(premise_expression) ]