コード例 #1
0
    def test_calculate_weight_svd_cost_all_layers(self):

        model = mnist_model.Net().to("cpu")
        print(model)

        layer_database = lad.LayerDatabase(model=model,
                                           input_shape=(1, 1, 28, 28))

        # Compress all layers by 50%

        # Create a list of tuples of (layer, comp_ratio)
        layer_ratio_list = []

        for layer in layer_database:
            if isinstance(layer.module, nn.Conv2d):
                layer_ratio_list.append(
                    LayerCompRatioPair(layer, Decimal('0.5')))
            else:
                layer_ratio_list.append(
                    LayerCompRatioPair(layer, Decimal('0.5')))

        compressed_cost = cc.WeightSvdCostCalculator.calculate_compressed_cost(
            layer_database, layer_ratio_list, CostMetric.mac)

        self.assertEqual(7031800, compressed_cost.mac)
コード例 #2
0
    def test_sort_on_occurrence(self):
        class Net(nn.Module):
            def __init__(self):
                super(Net, self).__init__()
                self.conv1 = nn.Conv2d(1, 10, kernel_size=3)
                self.conv2 = nn.Conv2d(10, 10, kernel_size=3)
                self.conv3 = nn.Conv2d(10, 10, kernel_size=3)
                self.conv4 = nn.Conv2d(10, 10, kernel_size=3)
                self.fc1 = nn.Linear(490, 300)
                self.fc2 = nn.Linear(300, 10)

            def forward(self, x):
                x = functional.relu(functional.max_pool2d(self.conv1(x), 2))
                x = functional.relu(self.conv2(x))
                x = functional.relu(self.conv3(x))
                x = functional.relu(self.conv4(x))
                x = x.view(x.size(0), -1)
                x = functional.relu(self.fc1(x))
                x = self.fc2(x)
                return functional.log_softmax(x, dim=1)

        orig_model = Net()

        data_loader = unittest.mock.MagicMock()
        number_of_batches = unittest.mock.MagicMock()
        samples_per_image = unittest.mock.MagicMock()

        input_channel_pruner = InputChannelPruner(
            data_loader=data_loader,
            input_shape=(1, 1, 28, 28),
            num_reconstruction_samples=number_of_batches,
            allow_custom_downsample_ops=True)

        layer_comp_ratio_list = [
            LayerCompRatioPair(Layer(orig_model.conv4, None, None), None),
            LayerCompRatioPair(Layer(orig_model.conv1, None, None), None),
            LayerCompRatioPair(Layer(orig_model.conv3, None, None), None),
            LayerCompRatioPair(Layer(orig_model.conv2, None, None), None)
        ]

        sorted_layer_comp_ratio_list = input_channel_pruner._sort_on_occurrence(
            orig_model, layer_comp_ratio_list)

        self.assertEqual(sorted_layer_comp_ratio_list[0].layer.module,
                         orig_model.conv1)
        self.assertEqual(sorted_layer_comp_ratio_list[1].layer.module,
                         orig_model.conv2)
        self.assertEqual(sorted_layer_comp_ratio_list[2].layer.module,
                         orig_model.conv3)
        self.assertEqual(sorted_layer_comp_ratio_list[3].layer.module,
                         orig_model.conv4)

        self.assertTrue(
            isinstance(sorted_layer_comp_ratio_list[0].layer, Layer))
        self.assertTrue(
            isinstance(sorted_layer_comp_ratio_list[1].layer, Layer))
        self.assertTrue(
            isinstance(sorted_layer_comp_ratio_list[2].layer, Layer))
        self.assertTrue(
            isinstance(sorted_layer_comp_ratio_list[3].layer, Layer))
コード例 #3
0
    def test_prune_model_2_layers(self):
        """ Punning two layers with 0.5 comp-ratio in MNIST"""

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        orig_layer_db = LayerDatabase(model=sess,
                                      input_shape=(1, 28, 28, 1),
                                      working_dir=None)
        conv1 = orig_layer_db.find_layer_by_name('conv2d/Conv2D')
        conv2 = orig_layer_db.find_layer_by_name('conv2d_1/Conv2D')

        layer_comp_ratio_list = [
            LayerCompRatioPair(conv1, Decimal(0.5)),
            LayerCompRatioPair(conv2, Decimal(0.5))
        ]

        spatial_svd_pruner = SpatialSvdPruner()
        comp_layer_db = spatial_svd_pruner.prune_model(orig_layer_db,
                                                       layer_comp_ratio_list,
                                                       CostMetric.mac,
                                                       trainer=None)

        conv1_a = comp_layer_db.find_layer_by_name('conv2d_a/Conv2D')
        conv1_b = comp_layer_db.find_layer_by_name('conv2d_b/Conv2D')

        # Weights shape [kh, kw, Nic, Noc]
        self.assertEqual([5, 1, 1, 2],
                         conv1_a.module.inputs[1].get_shape().as_list())
        self.assertEqual([1, 5, 2, 32],
                         conv1_b.module.inputs[1].get_shape().as_list())

        conv2_a = comp_layer_db.find_layer_by_name('conv2d_1_a/Conv2D')
        conv2_b = comp_layer_db.find_layer_by_name('conv2d_1_b/Conv2D')

        self.assertEqual([5, 1, 32, 53],
                         conv2_a.module.inputs[1].get_shape().as_list())
        self.assertEqual([1, 5, 53, 64],
                         conv2_b.module.inputs[1].get_shape().as_list())

        for layer in comp_layer_db:
            print("Layer: " + layer.name)
            print("   Module: " + str(layer.module.name))

        tf.compat.v1.reset_default_graph()
        sess.close()
        # delete temp directory
        shutil.rmtree(str('./temp_meta/'))
コード例 #4
0
    def test_prune_model_2_layers(self):

        model = mnist_torch_model.Net()

        # Create a layer database
        orig_layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))
        # Copy the db
        comp_layer_db = copy.deepcopy(orig_layer_db)

        conv1 = comp_layer_db.find_layer_by_name('conv1')
        conv2 = comp_layer_db.find_layer_by_name('conv2')
        pruner = SpatialSvdPruner()

        layer_db = pruner.prune_model(orig_layer_db, [
            LayerCompRatioPair(conv1, Decimal(0.5)),
            LayerCompRatioPair(conv2, Decimal(0.5))
        ],
                                      CostMetric.mac,
                                      trainer=None)

        conv1_a = layer_db.find_layer_by_name('conv1.0')
        conv1_b = layer_db.find_layer_by_name('conv1.1')

        self.assertEqual((5, 1), conv1_a.module.kernel_size)
        self.assertEqual(1, conv1_a.module.in_channels)
        self.assertEqual(2, conv1_a.module.out_channels)

        self.assertEqual((1, 5), conv1_b.module.kernel_size)
        self.assertEqual(2, conv1_b.module.in_channels)
        self.assertEqual(32, conv1_b.module.out_channels)

        conv2_a = layer_db.find_layer_by_name('conv2.0')
        conv2_b = layer_db.find_layer_by_name('conv2.1')

        self.assertEqual((5, 1), conv2_a.module.kernel_size)
        self.assertEqual(32, conv2_a.module.in_channels)
        self.assertEqual(53, conv2_a.module.out_channels)

        self.assertEqual((1, 5), conv2_b.module.kernel_size)
        self.assertEqual(53, conv2_b.module.in_channels)
        self.assertEqual(64, conv2_b.module.out_channels)

        self.assertTrue(isinstance(layer_db.model.conv1, torch.nn.Sequential))
        self.assertTrue(isinstance(layer_db.model.conv2, torch.nn.Sequential))

        for layer in layer_db:
            print("Layer: " + layer.name)
            print("   Module: " + str(layer.module))

        print(layer_db.model)
コード例 #5
0
    def get_compressed_model_cost(cls, layer_db, layer_ratio_list,
                                  original_model_cost, cost_metric):
        """
        computes compressed model cost metric with all layers included
        :param layer: layer data base
        :param layer: layer ratio list
        :param layer: original model cost
        :param layer: cost metric
        :return: comp ratio for compressed model
        """

        # Add the layers that were not selected to this list to get the accurate cost of the compressed model
        for layer in layer_db:
            if layer not in layer_db.get_selected_layers():
                layer_ratio_list.append(LayerCompRatioPair(layer, None))

        # Calculate compressed model cost
        compressed_model_cost = cls.calculate_compressed_cost(
            layer_db, layer_ratio_list, cost_metric)

        if cost_metric == CostMetric.memory:
            current_comp_ratio = Decimal(compressed_model_cost.memory /
                                         original_model_cost.memory)
        else:
            current_comp_ratio = Decimal(compressed_model_cost.mac /
                                         original_model_cost.mac)

        return current_comp_ratio
コード例 #6
0
    def _sort_on_occurrence(self, sess: tf.compat.v1.Session, layer_comp_ratio_list: List[LayerCompRatioPair]) -> \
            List[LayerCompRatioPair]:
        """
        Function takes session and list of conv layer-comp ratio to sort, and sorts them based on
        occurrence in the model.

        :param sess: tf.compat.v1.Session
        :param layer_comp_ratio_list: layer compression ratio list
        :return: sorted_layer_comp_ratio_List
        """
        sorted_layer_comp_ratio_list = []

        ordered_ops = get_ordered_ops(graph=sess.graph,
                                      starting_op_names=self._input_op_names,
                                      output_op_names=self._output_op_names)

        for op in ordered_ops:

            if is_op_compressible(op):
                for pair in layer_comp_ratio_list:

                    if op.name == pair.layer.name:
                        sorted_layer_comp_ratio_list.append(
                            LayerCompRatioPair(pair.layer, pair.comp_ratio))

        return sorted_layer_comp_ratio_list
コード例 #7
0
    def test_calculate_spatial_svd_cost_all_layers(self):

        model = mnist_model.Net().to("cpu")
        print(model)

        layer_database = lad.LayerDatabase(model=model,
                                           input_shape=(1, 1, 28, 28))
        model_cost = cc.SpatialSvdCostCalculator.compute_model_cost(
            layer_database)
        self.assertEqual(627200 + 10035200 + 3211264 + 10240, model_cost.mac)

        # Compress all layers by 50%

        # Create a list of tuples of (layer, comp_ratio)
        layer_ratio_list = []

        for layer in layer_database:
            layer_ratio_list.append(LayerCompRatioPair(layer, Decimal(0.5)))

        compressed_cost = cc.SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_database, layer_ratio_list, CostMetric.mac)

        self.assertEqual(
            5244960 + (3136 * 385 + 385 * 1024) + (1024 * 4 + 4 * 10),
            compressed_cost.mac)
コード例 #8
0
    def _compute_compressed_model_cost(self, layer_ratio_list,
                                       original_model_cost):
        """
        Compute compression score
        Add the layers that were not selected to this list to get the accurate cost of the compressed model.
        :param layer_ratio_list: layers, comp ratio pair list
        :param original_model_cost: cost of the original model
        :return: model compression ratio of compressed model
        """
        for layer in self._layer_db:
            if layer not in self._layer_db.get_selected_layers():
                layer_ratio_list.append(LayerCompRatioPair(layer, None))

            # Calculate compressed model cost
        compressed_model_cost = self._cost_calculator.calculate_compressed_cost(
            self._layer_db, layer_ratio_list, self._cost_metric)

        if self._cost_metric == CostMetric.memory:
            model_compression_ratio = Decimal(compressed_model_cost.memory /
                                              original_model_cost.memory)
        else:
            model_compression_ratio = Decimal(compressed_model_cost.mac /
                                              original_model_cost.mac)

        return model_compression_ratio
コード例 #9
0
 def sorting_hook(module, _inp, _out):
     """
     hook to sort modules based on occurrence
     """
     for pair in layer_comp_ratio_list:
         if pair.layer.module == module:
             sorted_layer_comp_ratio_list.append(
                 LayerCompRatioPair(pair.layer, pair.comp_ratio))
コード例 #10
0
    def _compute_layerwise_eval_score_per_comp_ratio_candidate(
            self, tabular_progress_object, progress_bar,
            layer: Layer) -> Dict[Decimal, float]:
        """
        Computes eval scores for each compression-ratio candidate for a given layer
        :param layer: Layer for which to calculate eval scores
        :return: Dictionary of {compression_ratio: eval_score} for each compression-ratio candidate
        """

        layer_wise_eval_scores_dict = {}

        # Only publish plots to a document if a bokeh server session exists
        if self.bokeh_session:

            # plot to visualize the evaluation scores as they update for each layer
            layer_wise_eval_scores_plot = LinePlot(
                x_axis_label="Compression Ratios",
                y_axis_label="Eval Scores",
                title=layer.name,
                bokeh_session=self.bokeh_session)
        # Loop over each candidate
        for comp_ratio in self._comp_ratio_candidates:
            logger.info(
                "Analyzing compression ratio: %s =====================>",
                comp_ratio)

            # Prune layer given this comp ratio
            pruned_layer_db = self._pruner.prune_model(
                self._layer_db, [LayerCompRatioPair(layer, comp_ratio)],
                self._cost_metric,
                trainer=None)

            eval_score = self._eval_func(pruned_layer_db.model,
                                         self._eval_iter,
                                         use_cuda=self._is_cuda)
            layer_wise_eval_scores_dict[comp_ratio] = eval_score

            # destroy the layer database
            pruned_layer_db.destroy()
            pruned_layer_db = None

            logger.info("Layer %s, comp_ratio %f ==> eval_score=%f",
                        layer.name, comp_ratio, eval_score)

            if self.bokeh_session:
                layer_wise_eval_scores_plot.update(new_x_coordinate=comp_ratio,
                                                   new_y_coordinate=eval_score)
                # Update the data table by adding the computed eval score
                tabular_progress_object.update_table(str(comp_ratio),
                                                     layer.name, eval_score)
                # Update the progress bar
                progress_bar.update()

        # remove plot so that we have a fresh figure to visualize for the next layer.
        if self.bokeh_session:
            layer_wise_eval_scores_plot.remove_plot()

        return layer_wise_eval_scores_dict
コード例 #11
0
    def _get_layer_pairs(layer_db: LayerDatabase, module_comp_ratio_pairs: List[ModuleCompRatioPair]):
        layer_comp_ratio_pairs = []

        for pair in module_comp_ratio_pairs:
            layer_comp_ratio_pair = LayerCompRatioPair(layer_db.find_layer_by_module(pair.module),
                                                       pair.comp_ratio)
            layer_comp_ratio_pairs.append(layer_comp_ratio_pair)

        return layer_comp_ratio_pairs
コード例 #12
0
    def _find_all_comp_ratios_given_eval_score(self, given_eval_score,
                                               eval_scores_dict):
        layer_ratio_list = []
        for layer in self._layer_db.get_selected_layers():
            comp_ratio = self._find_layer_comp_ratio_given_eval_score(
                eval_scores_dict, given_eval_score, layer)
            layer_ratio_list.append(LayerCompRatioPair(layer, comp_ratio))

        return layer_ratio_list
コード例 #13
0
    def test_prune_model_tf_slim(self):
        """ Punning a model with tf slim api """

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            x = tf.compat.v1.placeholder(tf.float32, [1, 32, 32, 3])
            _ = tf_slim_basic_model(x)
            sess.run(tf.compat.v1.global_variables_initializer())

        conn_graph_orig = ConnectedGraph(sess.graph, ['Placeholder'],
                                         ['tf_slim_model/Softmax'])
        num_ops_orig = len(conn_graph_orig.get_all_ops())

        # Create a layer database
        orig_layer_db = LayerDatabase(model=sess,
                                      input_shape=(1, 32, 32, 3),
                                      working_dir=None)
        conv1 = orig_layer_db.find_layer_by_name('Conv_1/Conv2D')
        conv1_bias = BiasUtils.get_bias_as_numpy_data(orig_layer_db.model,
                                                      conv1.module)

        layer_comp_ratio_list = [LayerCompRatioPair(conv1, Decimal(0.5))]

        spatial_svd_pruner = SpatialSvdPruner()
        comp_layer_db = spatial_svd_pruner.prune_model(orig_layer_db,
                                                       layer_comp_ratio_list,
                                                       CostMetric.mac,
                                                       trainer=None)
        # Check that svd added these ops
        _ = comp_layer_db.model.graph.get_operation_by_name('Conv_1_a/Conv2D')
        _ = comp_layer_db.model.graph.get_operation_by_name('Conv_1_b/Conv2D')

        conn_graph_new = ConnectedGraph(comp_layer_db.model.graph,
                                        ['Placeholder'],
                                        ['tf_slim_model/Softmax'])
        num_ops_new = len(conn_graph_new.get_all_ops())
        self.assertEqual(num_ops_orig + 1, num_ops_new)
        bias_add_op = comp_layer_db.model.graph.get_operation_by_name(
            'Conv_1_b/BiasAdd')
        conv_1_b_op = comp_layer_db.model.graph.get_operation_by_name(
            'Conv_1_b/Conv2D')
        self.assertEqual(
            conn_graph_new._module_identifier.get_op_info(bias_add_op),
            conn_graph_new._module_identifier.get_op_info(conv_1_b_op))
        self.assertTrue(
            np.array_equal(
                conv1_bias,
                BiasUtils.get_bias_as_numpy_data(comp_layer_db.model,
                                                 conv_1_b_op)))
コード例 #14
0
    def test_select_per_layer_comp_ratios_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        rounding_algo = unittest.mock.MagicMock()
        eval_func.side_effect = [
            10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55,
            60
        ]
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]
        model = mnist_torch_model.Net()
        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))

        selected_layers = [
            layer for layer in layer_db if isinstance(layer.module, nn.Conv2d)
        ]
        layer_db.mark_picked_layers(selected_layers)

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            Decimal(0.4),
            10,
            True,
            None,
            rounding_algo,
            False,
            bokeh_session=None)
        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)

        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.3), actual_compression_ratio, abs_tol=0.8))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)
コード例 #15
0
    def test_prune_model_2_layers(self):

        model = mnist_model.Net()

        # Create a layer database
        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))

        fc1 = layer_db.find_layer_by_name('fc1')
        conv2 = layer_db.find_layer_by_name('conv2')
        pruner = WeightSvdPruner()

        layer_db = pruner.prune_model(layer_db, [LayerCompRatioPair(fc1, Decimal(0.5)),
                                                 LayerCompRatioPair(conv2, Decimal(0.5))], aimet_common.defs.CostMetric.mac,
                                      trainer=None)

        fc1_a = layer_db.find_layer_by_name('fc1.0')
        fc1_b = layer_db.find_layer_by_name('fc1.1')

        self.assertEqual(3136, fc1_a.module.in_features)
        self.assertEqual(1024, fc1_b.module.out_features)

        conv2_a = layer_db.find_layer_by_name('conv2.0')
        conv2_b = layer_db.find_layer_by_name('conv2.1')

        self.assertEqual((1, 1), conv2_a.module.kernel_size)
        self.assertEqual(32, conv2_a.module.in_channels)
        self.assertEqual(15, conv2_a.module.out_channels)

        self.assertEqual((5, 5), conv2_b.module.kernel_size)
        self.assertEqual(15, conv2_b.module.in_channels)
        self.assertEqual(64, conv2_b.module.out_channels)

        self.assertTrue(isinstance(layer_db.model.fc1, nn.Sequential))
        self.assertTrue(isinstance(layer_db.model.conv2, nn.Sequential))

        for layer in layer_db:
            print("Layer: " + layer.name)
            print("   Module: " + str(layer.module))

        print(layer_db.model)
コード例 #16
0
    def test_calculate_channel_pruning_cost_all_layers(self):

        model = mnist_model.Net().to("cpu")
        print(model)

        layer_database = lad.LayerDatabase(model=model,
                                           input_shape=(1, 1, 28, 28))

        # Compress all layers by 50%

        # Create a list of tuples of (layer, comp_ratio)
        layer_ratio_list = []

        # Unfortunately in mnist we can only input channel prune conv2
        for layer in layer_database:
            if layer.module is model.conv2:
                layer_ratio_list.append(
                    LayerCompRatioPair(layer, Decimal('0.5')))
            else:
                layer_ratio_list.append(LayerCompRatioPair(layer, None))

        # Create the Input channel pruner
        dataset_size = 1000
        batch_size = 10

        # create fake data loader with image size (1, 28, 28)
        data_loader = self.create_fake_data_loader(dataset_size=dataset_size,
                                                   batch_size=batch_size)

        pruner = InputChannelPruner(data_loader=data_loader,
                                    input_shape=(1, 1, 28, 28),
                                    num_reconstruction_samples=10,
                                    allow_custom_downsample_ops=True)

        cost_calculator = ChannelPruningCostCalculator(pruner)

        compressed_cost = cost_calculator.calculate_compressed_cost(
            layer_database, layer_ratio_list, CostMetric.mac)

        self.assertEqual(8552704, compressed_cost.mac)
コード例 #17
0
    def test_calculate_spatial_svd_cost_all_layers(self):

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        layer_database = LayerDatabase(model=sess,
                                       input_shape=(1, 28, 28, 1),
                                       working_dir=None)

        # Compress all layers by 50%

        # Create a list of tuples of (layer, comp_ratio)
        layer_ratio_list = []

        for layer in layer_database:

            if layer.module.type == 'Conv2D':
                layer_ratio_list.append(LayerCompRatioPair(
                    layer, Decimal(0.5)))
            else:
                layer_ratio_list.append(LayerCompRatioPair(layer, None))

        compressed_cost = cc.SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_database, layer_ratio_list, CostMetric.mac)

        self.assertEqual(8466464, compressed_cost.mac)

        tf.compat.v1.reset_default_graph()
        sess.close()
        # delete temp directory
        shutil.rmtree(str('./temp_meta/'))
コード例 #18
0
    def _compute_comp_ratios_and_eval_scores(self, rank_index):
        """
        :param rank_index: Rank index for which the comp ratio and
                           eval score need to be computed across layers
        :return: layers<->comp_ratio<->eval_score
                 associations for input rank index
        """

        comp_ratio_eval_score_across_layers = []
        layer_ratio_list = []

        for layer in self._layer_db.get_selected_layers():
            # Get the candidate rank for given rank index and layer
            rank = self._svd_lib_ref.GetCandidateRanks(str(layer.name),
                                                       rank_index)

            # Get compression ratio for this layer ad rank index
            comp_ratio = self._cost_calculator.calculate_comp_ratio_given_rank(
                layer, rank[0], self._cost_metric)

            # Eval_score for this comp_ratio
            pruned_layer_db = self._pruner.prune_model(
                self._layer_db,
                [LayerCompRatioPair(layer=layer, comp_ratio=comp_ratio)],
                self._cost_metric, None)

            eval_score = self._eval_func(pruned_layer_db.model,
                                         self._eval_iter,
                                         use_cuda=self._is_cuda)

            # destroy the layer database
            pruned_layer_db.destroy()
            pruned_layer_db = None

            comp_ratio_eval_score_across_layers.append(
                LayerCompRatioEvalScore(layer, comp_ratio, eval_score))
            layer_ratio_list.append(
                LayerCompRatioPair(layer=layer, comp_ratio=comp_ratio))

        return layer_ratio_list, comp_ratio_eval_score_across_layers
コード例 #19
0
    def test_prune_conv_no_bias(self):
        """ Test spatial svd on a conv layer with no bias """
        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            inputs = tf.keras.Input(shape=(
                32,
                32,
                3,
            ))
            x = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs)
            _ = tf.keras.layers.Flatten()(x)
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        orig_layer_db = LayerDatabase(model=sess,
                                      input_shape=(1, 32, 32, 3),
                                      working_dir=None)
        conv_op = orig_layer_db.find_layer_by_name('conv2d/Conv2D')

        layer_comp_ratio_list = [LayerCompRatioPair(conv_op, Decimal(0.5))]

        spatial_svd_pruner = SpatialSvdPruner()
        comp_layer_db = spatial_svd_pruner.prune_model(orig_layer_db,
                                                       layer_comp_ratio_list,
                                                       CostMetric.mac,
                                                       trainer=None)
        # Check that svd added these ops
        _ = comp_layer_db.model.graph.get_operation_by_name('conv2d_a/Conv2D')
        conv2d_b_op = comp_layer_db.model.graph.get_operation_by_name(
            'conv2d_b/Conv2D')
        reshape_op = comp_layer_db.model.graph.get_operation_by_name(
            'flatten/Reshape')
        self.assertEqual(conv2d_b_op, reshape_op.inputs[0].op)
コード例 #20
0
    def _calculate_model_comp_ratio_for_given_eval_score(
            self, eval_score, eval_scores_dict, original_model_cost):

        # Calculate the compression ratios for each layer based on this score
        layer_ratio_list = self._find_all_comp_ratios_given_eval_score(
            eval_score, eval_scores_dict)
        for layer in self._layer_db:
            if layer not in self._layer_db.get_selected_layers():
                layer_ratio_list.append(LayerCompRatioPair(layer, None))

        # Calculate compressed model cost
        compressed_model_cost = self._cost_calculator.calculate_compressed_cost(
            self._layer_db, layer_ratio_list, self._cost_metric)

        if self._cost_metric == CostMetric.memory:
            current_comp_ratio = Decimal(compressed_model_cost.memory /
                                         original_model_cost.memory)
        else:
            current_comp_ratio = Decimal(compressed_model_cost.mac /
                                         original_model_cost.mac)

        return current_comp_ratio
コード例 #21
0
    def test_prune_model(self):
        """Test end to end prune model with Mnist"""
        class Net(nn.Module):
            def __init__(self):
                super(Net, self).__init__()
                self.conv1 = nn.Conv2d(1, 10, kernel_size=3)
                self.max_pool2d = nn.MaxPool2d(2)
                self.relu1 = nn.ReLU()
                self.conv2 = nn.Conv2d(10, 20, kernel_size=3)
                self.relu2 = nn.ReLU()
                self.conv3 = nn.Conv2d(20, 30, kernel_size=3)
                self.relu3 = nn.ReLU()
                self.conv4 = nn.Conv2d(30, 40, kernel_size=3)
                self.relu4 = nn.ReLU()
                self.fc1 = nn.Linear(7 * 7 * 40, 300)
                self.relu5 = nn.ReLU()
                self.fc2 = nn.Linear(300, 10)
                self.log_softmax = nn.LogSoftmax(dim=1)

            def forward(self, x):
                x = self.relu1(self.max_pool2d(self.conv1(x)))
                x = self.relu2(self.conv2(x))
                x = self.relu3(self.conv3(x))
                x = self.relu4(self.conv4(x))
                x = x.view(x.size(0), -1)
                x = self.relu5(self.fc1(x))
                x = self.fc2(x)
                return self.log_softmax(x)

        orig_model = Net()
        orig_model.eval()
        # Create a layer database
        orig_layer_db = LayerDatabase(orig_model, input_shape=(1, 1, 28, 28))
        dataset_size = 1000
        batch_size = 10
        # max out number of batches
        number_of_batches = 100
        samples_per_image = 10

        # create fake data loader with image size (1, 28, 28)
        data_loader = create_fake_data_loader(dataset_size=dataset_size,
                                              batch_size=batch_size)

        input_channel_pruner = InputChannelPruner(
            data_loader=data_loader,
            input_shape=(1, 1, 28, 28),
            num_reconstruction_samples=number_of_batches,
            allow_custom_downsample_ops=True)

        # keeping compression ratio = 0.5 for all layers
        layer_comp_ratio_list = [
            LayerCompRatioPair(Layer(orig_model.conv4, 'conv4', None), 0.5),
            LayerCompRatioPair(Layer(orig_model.conv3, 'conv3', None), 0.5),
            LayerCompRatioPair(Layer(orig_model.conv2, 'conv2', None), 0.5)
        ]

        comp_layer_db = input_channel_pruner.prune_model(orig_layer_db,
                                                         layer_comp_ratio_list,
                                                         CostMetric.mac,
                                                         trainer=None)

        self.assertEqual(comp_layer_db.model.conv2.in_channels, 5)
        self.assertEqual(comp_layer_db.model.conv2.out_channels, 10)

        self.assertEqual(comp_layer_db.model.conv3.in_channels, 10)
        self.assertEqual(comp_layer_db.model.conv3.out_channels, 15)

        self.assertEqual(comp_layer_db.model.conv4.in_channels, 15)
        self.assertEqual(comp_layer_db.model.conv4.out_channels, 40)
コード例 #22
0
    def test_prune_model_with_seq(self):
        """Test end to end prune model with resnet18"""

        batch_size = 2
        dataset_size = 1000
        number_of_batches = 1
        samples_per_image = 10
        num_reconstruction_samples = number_of_batches * batch_size * samples_per_image

        resnet18_model = models.resnet18(pretrained=True)
        resnet18_model.eval()

        # Create a layer database
        orig_layer_db = LayerDatabase(resnet18_model,
                                      input_shape=(1, 3, 224, 224))

        data_loader = create_fake_data_loader(dataset_size=dataset_size,
                                              batch_size=batch_size,
                                              image_size=(3, 224, 224))

        input_channel_pruner = InputChannelPruner(
            data_loader=data_loader,
            input_shape=(1, 3, 224, 224),
            num_reconstruction_samples=num_reconstruction_samples,
            allow_custom_downsample_ops=True)

        # keeping compression ratio = 0.5 for all layers
        layer_comp_ratio_list = [
            LayerCompRatioPair(
                Layer(resnet18_model.layer4[1].conv1, 'layer4.1.conv1', None),
                0.5),
            LayerCompRatioPair(
                Layer(resnet18_model.layer3[1].conv1, 'layer3.1.conv1', None),
                0.5),
            LayerCompRatioPair(
                Layer(resnet18_model.layer2[1].conv1, 'layer2.1.conv1', None),
                0.5),
            LayerCompRatioPair(
                Layer(resnet18_model.layer1[1].conv1, 'layer1.1.conv1', None),
                0.5),
            LayerCompRatioPair(
                Layer(resnet18_model.layer1[0].conv2, 'layer1.0.conv2', None),
                0.5)
        ]

        comp_layer_db = input_channel_pruner.prune_model(orig_layer_db,
                                                         layer_comp_ratio_list,
                                                         CostMetric.mac,
                                                         trainer=None)

        # 1) not below split
        self.assertEqual(comp_layer_db.model.layer1[0].conv2.in_channels, 32)
        self.assertEqual(comp_layer_db.model.layer1[0].conv2.out_channels, 64)
        self.assertEqual(
            list(comp_layer_db.model.layer1[0].conv2.weight.shape),
            [64, 32, 3, 3])
        # impacted
        self.assertEqual(comp_layer_db.model.layer1[0].conv1.in_channels, 64)
        self.assertEqual(comp_layer_db.model.layer1[0].conv1.out_channels, 32)
        self.assertEqual(
            list(comp_layer_db.model.layer1[0].conv1.weight.shape),
            [32, 64, 3, 3])

        # 2) below split

        # 64 * .5
        self.assertEqual(comp_layer_db.model.layer1[1].conv1[1].in_channels,
                         32)
        self.assertEqual(comp_layer_db.model.layer1[1].conv1[1].out_channels,
                         64)
        self.assertEqual(
            list(comp_layer_db.model.layer1[1].conv1[1].weight.shape),
            [64, 32, 3, 3])

        # 128 * .5
        self.assertEqual(comp_layer_db.model.layer2[1].conv1[1].in_channels,
                         64)
        self.assertEqual(comp_layer_db.model.layer2[1].conv1[1].out_channels,
                         128)
        self.assertEqual(
            list(comp_layer_db.model.layer2[1].conv1[1].weight.shape),
            [128, 64, 3, 3])

        # 256 * .5
        self.assertEqual(comp_layer_db.model.layer3[1].conv1[1].in_channels,
                         128)
        self.assertEqual(comp_layer_db.model.layer3[1].conv1[1].out_channels,
                         256)
        self.assertEqual(
            list(comp_layer_db.model.layer3[1].conv1[1].weight.shape),
            [256, 128, 3, 3])

        # 512 * .5
        self.assertEqual(comp_layer_db.model.layer4[1].conv1[1].in_channels,
                         256)
        self.assertEqual(comp_layer_db.model.layer4[1].conv1[1].out_channels,
                         512)
        self.assertEqual(
            list(comp_layer_db.model.layer4[1].conv1[1].weight.shape),
            [512, 256, 3, 3])
コード例 #23
0
    def test_calculate_channel_pruning_cost_all_layers(self):

        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # model will be constructed in default graph
            _ = mnist(data_format='channels_last')
            # initialize the weights and biases with appropriate initializer
            sess.run(tf.compat.v1.global_variables_initializer())

        meta_path = str('./temp_working_dir/')
        if not os.path.exists(meta_path):
            os.mkdir(meta_path)

        layer_db = LayerDatabase(model=sess,
                                 input_shape=(1, 28, 28, 1),
                                 working_dir=meta_path)

        # Compress all layers by 50%

        # Create a list of tuples of (layer, comp_ratio)
        layer_ratio_list = []

        # Unfortunately in mnist we can only input channel prune conv2d_1/Conv2D
        for layer in layer_db:
            if layer.module.name == 'conv2d_1/Conv2D':
                layer_ratio_list.append(
                    LayerCompRatioPair(layer, Decimal('0.5')))
            else:
                layer_ratio_list.append(LayerCompRatioPair(layer, None))

        inp_op_names = ['reshape_input']
        output_op_names = ['dense_1/BiasAdd']

        data_set = unittest.mock.MagicMock()
        batch_size = unittest.mock.MagicMock()
        num_reconstruction_samples = unittest.mock.MagicMock()

        pruner = InputChannelPruner(
            input_op_names=inp_op_names,
            output_op_names=output_op_names,
            data_set=data_set,
            batch_size=batch_size,
            num_reconstruction_samples=num_reconstruction_samples,
            allow_custom_downsample_ops=True)

        cost_calculator = ChannelPruningCostCalculator(pruner)

        compressed_cost = cost_calculator.calculate_compressed_cost(
            layer_db, layer_ratio_list, CostMetric.mac)

        self.assertEqual(8552704, compressed_cost.mac)
        self.assertEqual(3247504, compressed_cost.memory)

        # delete the meta and the checkpoint files
        shutil.rmtree(meta_path)

        layer_db.model.close()
コード例 #24
0
    def test_calculate_channel_pruning_cost_two_layers(self):
        """
        test compressed model cost using two layers
        :return:
        """
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # model will be constructed in default graph
            test_models.single_residual()
            init = tf.compat.v1.global_variables_initializer()

        # initialize the weights and biases with appropriate initializer
        sess.run(init)

        meta_path = str('./temp_working_dir/')

        if not os.path.exists(meta_path):
            os.mkdir(meta_path)

        layer_db = LayerDatabase(model=sess,
                                 input_shape=None,
                                 working_dir=meta_path)

        # Create a list of tuples of (layer, comp_ratio)
        layer_ratio_list = []

        layer_names = ['conv2d_2/Conv2D', 'conv2d_3/Conv2D']
        for layer in layer_db:
            if layer.module.name in layer_names:
                layer_ratio_list.append(LayerCompRatioPair(layer, 0.5))
            else:
                layer_ratio_list.append(LayerCompRatioPair(layer, None))

        input_op_names = ['input_1']
        output_op_names = ['single_residual/Softmax']
        data_set = unittest.mock.MagicMock()
        batch_size = unittest.mock.MagicMock()
        num_reconstruction_samples = unittest.mock.MagicMock()

        pruner = InputChannelPruner(
            input_op_names=input_op_names,
            output_op_names=output_op_names,
            data_set=data_set,
            batch_size=batch_size,
            num_reconstruction_samples=num_reconstruction_samples,
            allow_custom_downsample_ops=True)

        cost_calculator = ChannelPruningCostCalculator(pruner)

        compressed_cost = cost_calculator.calculate_compressed_cost(
            layer_db, layer_ratio_list, CostMetric.mac)

        self.assertEqual(108544, compressed_cost.mac)
        self.assertEqual(1264, compressed_cost.memory)

        # delete the meta and the checkpoint files
        shutil.rmtree(meta_path)

        layer_db.model.close()
コード例 #25
0
    def test_prune_model(self):
        """
        Test end-to-end prune_model with VGG16-imagenet
        """
        AimetLogger.set_area_logger_level(AimetLogger.LogAreas.Winnow,
                                          logging.INFO)
        tf.compat.v1.reset_default_graph()

        batch_size = 1
        input_data = np.random.rand(100, 224, 224, 3)
        dataset = tf.data.Dataset.from_tensor_slices(input_data)
        dataset = dataset.batch(batch_size=batch_size)

        orig_g = tf.Graph()

        with orig_g.as_default():
            _ = VGG16(weights=None,
                      input_shape=(224, 224, 3),
                      include_top=False)
            orig_init = tf.compat.v1.global_variables_initializer()

        input_op_names = ['input_1']
        output_op_names = ['block5_pool/MaxPool']
        # create sess with graph
        orig_sess = tf.compat.v1.Session(graph=orig_g)
        # initialize all the variables in VGG16
        orig_sess.run(orig_init)

        # create layer database
        layer_db = LayerDatabase(model=orig_sess,
                                 input_shape=(1, 224, 224, 3),
                                 working_dir=None)

        block1_conv2 = layer_db.model.graph.get_operation_by_name(
            'block1_conv2/Conv2D')
        block2_conv1 = layer_db.model.graph.get_operation_by_name(
            'block2_conv1/Conv2D')
        block2_conv2 = layer_db.model.graph.get_operation_by_name(
            'block2_conv2/Conv2D')

        # output shape in NCHW format
        block1_conv2_output_shape = block1_conv2.outputs[0].shape
        block2_conv1_output_shape = block2_conv1.outputs[0].shape
        block2_conv2_output_shape = block2_conv2.outputs[0].shape

        # keeping compression ratio = 0.5 for all layers
        layer_comp_ratio_list = [
            LayerCompRatioPair(
                Layer(model=layer_db.model,
                      op=block1_conv2,
                      output_shape=block1_conv2_output_shape), 0.5),
            LayerCompRatioPair(
                Layer(model=layer_db.model,
                      op=block2_conv1,
                      output_shape=block2_conv1_output_shape), 0.5),
            LayerCompRatioPair(
                Layer(model=layer_db.model,
                      op=block2_conv2,
                      output_shape=block2_conv2_output_shape), 0.5)
        ]

        cp = InputChannelPruner(input_op_names=input_op_names,
                                output_op_names=output_op_names,
                                data_set=dataset,
                                batch_size=batch_size,
                                num_reconstruction_samples=20,
                                allow_custom_downsample_ops=True)

        comp_layer_db = cp.prune_model(
            layer_db=layer_db,
            layer_comp_ratio_list=layer_comp_ratio_list,
            cost_metric=CostMetric.mac,
            trainer=None)

        pruned_block1_conv2 = comp_layer_db.find_layer_by_name(
            'reduced_reduced_block1_conv2/Conv2D')
        pruned_block2_conv1 = comp_layer_db.find_layer_by_name(
            'reduced_reduced_block2_conv1/Conv2D')
        pruned_block2_conv2 = comp_layer_db.find_layer_by_name(
            'reduced_block2_conv2/Conv2D')

        # input channels = 64 * 0.5 = 32
        # output channels = 64 * 0.5 = 32
        self.assertEqual(pruned_block1_conv2.weight_shape[1], 32)
        self.assertEqual(pruned_block1_conv2.weight_shape[0], 32)

        # input channels = 64 * 0.5 = 32
        # output channels = 128 * 0.5 = 64
        self.assertEqual(pruned_block2_conv1.weight_shape[1], 32)
        self.assertEqual(pruned_block2_conv1.weight_shape[0], 64)

        # input channels = 128 * 0.5 = 64
        # output channels = 128
        self.assertEqual(pruned_block2_conv2.weight_shape[1], 64)
        self.assertEqual(pruned_block2_conv2.weight_shape[0], 128)

        layer_db.model.close()
        comp_layer_db.model.close()
        # delete temp directory
        shutil.rmtree(str('./temp_meta/'))
コード例 #26
0
    def test_sort_on_occurrence(self):
        """
        Test sorting of ops based on occurrence
        """
        AimetLogger.set_area_logger_level(AimetLogger.LogAreas.Winnow,
                                          logging.INFO)
        tf.compat.v1.reset_default_graph()

        orig_g = tf.Graph()
        with orig_g.as_default():
            _ = VGG16(weights=None,
                      input_shape=(224, 224, 3),
                      include_top=False)
            orig_init = tf.compat.v1.global_variables_initializer()

        # create sess with graph
        orig_sess = tf.compat.v1.Session(graph=orig_g)
        orig_sess.run(orig_init)

        # create layer database
        layer_db = LayerDatabase(model=orig_sess,
                                 input_shape=(1, 224, 224, 3),
                                 working_dir=None)

        block1_conv2 = layer_db.model.graph.get_operation_by_name(
            'block1_conv2/Conv2D')
        block2_conv1 = layer_db.model.graph.get_operation_by_name(
            'block2_conv1/Conv2D')
        block2_conv2 = layer_db.model.graph.get_operation_by_name(
            'block2_conv2/Conv2D')
        block5_conv3 = layer_db.model.graph.get_operation_by_name(
            'block5_conv3/Conv2D')

        # output shape in NCHW format
        block1_conv2_output_shape = block1_conv2.outputs[0].shape
        block2_conv1_output_shape = block2_conv1.outputs[0].shape
        block2_conv2_output_shape = block2_conv2.outputs[0].shape
        block5_conv3_output_shape = block5_conv3.outputs[0].shape

        # keeping compression ratio = None for all layers
        layer_comp_ratio_list = [
            LayerCompRatioPair(
                Layer(model=layer_db.model,
                      op=block5_conv3,
                      output_shape=block5_conv3_output_shape), None),
            LayerCompRatioPair(
                Layer(model=layer_db.model,
                      op=block2_conv2,
                      output_shape=block2_conv2_output_shape), None),
            LayerCompRatioPair(
                Layer(model=layer_db.model,
                      op=block1_conv2,
                      output_shape=block1_conv2_output_shape), None),
            LayerCompRatioPair(
                Layer(model=layer_db.model,
                      op=block2_conv1,
                      output_shape=block2_conv1_output_shape), None)
        ]

        input_op_names = ['input_1']
        output_op_names = ['block5_pool/MaxPool']
        dataset = unittest.mock.MagicMock()
        batch_size = unittest.mock.MagicMock()
        num_reconstruction_samples = unittest.mock.MagicMock()

        cp = InputChannelPruner(
            input_op_names=input_op_names,
            output_op_names=output_op_names,
            data_set=dataset,
            batch_size=batch_size,
            num_reconstruction_samples=num_reconstruction_samples,
            allow_custom_downsample_ops=True)

        sorted_layer_comp_ratio_list = cp._sort_on_occurrence(
            layer_db.model, layer_comp_ratio_list)

        self.assertEqual(sorted_layer_comp_ratio_list[0].layer.module,
                         block1_conv2)
        self.assertEqual(sorted_layer_comp_ratio_list[1].layer.module,
                         block2_conv1)
        self.assertEqual(sorted_layer_comp_ratio_list[2].layer.module,
                         block2_conv2)
        self.assertEqual(sorted_layer_comp_ratio_list[3].layer.module,
                         block5_conv3)

        self.assertEqual(len(sorted_layer_comp_ratio_list), 4)
        layer_db.model.close()
        # delete temp directory
        shutil.rmtree(str('./temp_meta/'))
コード例 #27
0
    def test_select_per_layer_comp_ratios_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        rounding_algo = unittest.mock.MagicMock()
        eval_func.side_effect = [
            10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55,
            60
        ]
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        layer_db = LayerDatabase(model=sess,
                                 input_shape=(1, 28, 28, 1),
                                 working_dir=None)

        selected_layers = [
            layer for layer in layer_db if layer.module.type == 'Conv2D'
        ]
        layer_db.mark_picked_layers(selected_layers)

        url, process = start_bokeh_server_session(8006)
        bokeh_session = BokehServerSession(url=url, session_id="compression")

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db=layer_db,
            pruner=pruner,
            cost_calculator=SpatialSvdCostCalculator(),
            eval_func=eval_func,
            eval_iterations=20,
            cost_metric=CostMetric.mac,
            target_comp_ratio=Decimal(0.4),
            num_candidates=10,
            use_monotonic_fit=True,
            saved_eval_scores_dict=None,
            comp_ratio_rounding_algo=rounding_algo,
            use_cuda=False,
            bokeh_session=bokeh_session)

        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)

        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.3), actual_compression_ratio, abs_tol=0.8))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)

        tf.compat.v1.reset_default_graph()
        sess.close()

        bokeh_session.server_session.close("test complete")
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
コード例 #28
0
    def test_select_per_layer_comp_ratios(self):

        pruner = unittest.mock.MagicMock()
        eval_func = unittest.mock.MagicMock()
        rounding_algo = unittest.mock.MagicMock()
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]
        eval_func.side_effect = [
            10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55,
            60
        ]

        model = mnist_torch_model.Net()
        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))

        layer1 = layer_db.find_layer_by_name('conv1')
        layer2 = layer_db.find_layer_by_name('conv2')
        selected_layers = [layer1, layer2]
        layer_db.mark_picked_layers([layer1, layer2])

        try:
            os.remove('./data/greedy_selection_eval_scores_dict.pkl')
        except OSError:
            pass

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            Decimal(0.6),
            10,
            True,
            None,
            rounding_algo,
            False,
            bokeh_session=None)

        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]
        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.6), actual_compression_ratio, abs_tol=0.05))
        self.assertTrue(
            os.path.isfile('./data/greedy_selection_eval_scores_dict.pkl'))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)

        # lets repeat with a saved eval_dict
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            Decimal(0.6),
            10,
            True,
            './data/greedy_selection_eval_scores_dict.pkl',
            rounding_algo,
            False,
            bokeh_session=None)
        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)

        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.6), actual_compression_ratio, abs_tol=0.05))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)