# 预测时间必须是整数,且不等于0 if not isinstance(args.predict_time, int) and args.predict_time == 0: return 'error predict time' if not os.path.exists(args.data_dir): return 'the data file is not exist' else: return '' if __name__ == "__main__": parser = ArgumentParser( description='Periodic prediction of the time series.') parser.add_argument('--model_name', default='lr', choices=models.names(), help='Name of the model to use.') parser.add_argument( '--data_dir', default='./aiopstools/timeseries_predict/data/timeseries_data.csv', help='Dir of the data to train') parser.add_argument('--predict_time', type=int, help='The prediction time.') args = parser.parse_args() check_result = check_param(args) if check_result == '':
# 预测时间必须是整数,且不等于0 if not isinstance(args.predict_time, int) and args.predict_time == 0: return 'error predict time' if not os.path.exists(args.data_dir): return 'the data file is not exist' else: return '' if __name__ == "__main__": parser = ArgumentParser(description='Prediction of the time series.') parser.add_argument( '--model_name', default='lr', choices=models.names(), help='Name of the model to use.') parser.add_argument( '--data_dir', default='./timeseries_predict/data/timeseries_data.csv', help='Dir of the data to train') parser.add_argument( '--predict_time', type=int, help='The prediction time.') args = parser.parse_args() check_result = check_param(args) if check_result == '': ori_data, timestamp_list, value_list = handle_data.get_train_data(args.data_dir, args.predict_time) if len(value_list) < args.predict_time: