def AipImageCensoR(filePath): client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) result = client.imageCensorUserDefined( get_file_content(filePath)) # result = client.imageCensorUserDefined('http://www.example.com/image.jpg') #print(result) return result['conclusionType']
def openpic(request): from qiniu import Auth, put_file, etag import qiniu.config from PIL import Image from aip import AipImageCensor a = request.FILES.get("imageData") #得到图片 b = random.randint(111111, 999999) key = 's2' + str(b) + '.jpg' Image = Image.open(a) Image.save('s1.jpg') #保存本地 APP_ID = '10027473' API_KEY = 'vuVlmlKsXULFfo438jiWfxb0' SECRET_KEY = '33Iew8K4zT3hBBI1YqGPaK9vcHD5dAxG' client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() img = get_file_content('s1.jpg') result = client.imageCensorUserDefined(img) if result['conclusion'] == '合规': # path = default_storage.save('s1.jpg', ContentFile(Image.read())) access_key = 'EjIqvG2iluFxOx-PzeIyCNUKqUL2je9Q5bfunOyg' secret_key = 'pqt97zqOt7cw07a9AWwEXPp0zofB_9swvTVJGOOr' q = Auth(access_key, secret_key) bucket_name = 'xunyingpicture' localfile = r"s1.jpg" token = q.upload_token(bucket_name, key) ret, info = put_file(token, key, localfile) #返回图片地址 return HttpResponse('http://files.g8.xmgc360.com/' + key) else: return HttpResponse("1")
def bad_words_filter(img_name): base_name = img_name.split('\\')[-1] text = ' ' with open('data/results/' + 'res_{}.txt'.format(base_name.split('.')[0]), 'r') as f: # text = f.read().split('\n') text = ' ' # for i in text: # temp += i lines = f.readlines() for line in lines: str_arr = line.strip().split(',') if len(str_arr) > 4: for word in str_arr[4:]: text += (word + ',') with open('data/results/' + 'res_{}.txt'.format(base_name.split('.')[0]), 'a') as f: client = AipImageCensor(appId='18097522', apiKey='bgeRXmpblbOMocErTxvMCiOF', secretKey='SyRmwoFGsKXqC3LvAAYwlDlf1BckBOwG') if client.antiSpam(text)['result']['spam'] == 0: f.write('无敏感信息') else: f.write('待检测的文本里面含有侮辱、色情、暴力和政治敏感词汇。\n') for i in client.antiSpam(text)['result']['reject']: if (len(i['hit']) != 0): f.write(str(i['hit']))
def __init__(self): # 测试数据 test_case = [np.zeros(10)] print('**** Load dict ****') f = open(config._URL['URL_DICT_PATH'], encoding='utf8') char = f.read() url_dict = eval(char) f = open(config._DGA['DGA_DICT_PATH'], encoding='utf8') char = f.read() dga_dict = eval(char) f.close() self.DGA_dict = dga_dict self.Url_dict = url_dict # 文本检测返回值 self.URL_labels = ['暴恐违禁', '文本色情', '政治敏感', '恶意推广', '低俗辱骂', '低质灌水'] print('**** Load model ****') ''' 创建加载模型的所需变量''' self.graph1 = tf.Graph() self.sess1 = tf.Session(graph=self.graph1) self.graph2 = tf.Graph() self.sess2 = tf.Session(graph=self.graph2) '''保证模型加载在一个图中,以便再使用模型时不为空''' with self.sess1.as_default(): with self.graph1.as_default(): self.DGAModel = tf.keras.models.load_model( config._DGA['DGA_MODEL_PATH']) # 初始化的时候要进行一次模拟测试,防止layer找不到 test_case = tf.keras.preprocessing.sequence.pad_sequences( test_case, maxlen=self.DGA_dict['maxlen'], ) self.DGAModel.predict(test_case, verbose=0) print('DGA模型初始化成功') keras.backend.clear_session() with self.sess2.as_default(): with self.graph2.as_default(): self.UrlModel = keras.models.load_model( config._URL['URL_MODEL_PATH']) test_case = keras.preprocessing.sequence.pad_sequences( test_case, maxlen=self.Url_dict['maxlen'], ) self.UrlModel.predict(test_case, verbose=0) print('URL模型初始化成功') self.iface = config.IFACE self.DGA_Flag = 1 self.URL_Flag = 1 self.mydb = connect(host='localhost', user='******', passwd='123456', database='dgamonitoring') print('**** Connect mysql ****') self.Mycursor = self.mydb.cursor() self.mysqlPool = self.MysqlPool() print('**** Connect success ****') self.client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) pass
def contentany(content): client = AipImageCensor('百度ai自己申请', '百度ai自己申请', '百度ai自己申请') result = client.textCensorUserDefined(content) result = json.loads(str(result).replace("'", '"')) if "error_code" in result: return result["error_msg"] if result["conclusionType"] != 1 \ and result["conclusionType"] != 3: return result["data"][0]["msg"] return False
def test_article_filter(): try: res = request.get_json() article_id = res.get('article_id') article_images = res.get('article_images') Logging.logger.info('request_args:{0}'.format(res)) if not article_id: return jsonify(errno=-1, errmsg='参数错误,请传入要查询的文章的article_id') article = Article.query.get(article_id) if not article: return jsonify(errno=-1, errmsg='参数错误,该文章不存在') docs = mongo_store.articles.find({'title': article.title}) doc = docs[0] article_dict = dict() content = doc.get('content') title = article.title.encode("utf-8") article_dict['title'] = title article_dict['content'] = content obj = SensitiveFilter() str11 = ''.join( [item.get('text') for item in content if item.get('text')]) text = {'content': str11} txt_data = obj.content_check(text) if txt_data.get('errcode') == 40001: redis_store.delete('access_token') txt_data = obj.content_check(text) Logging.logger.info('res_data:{0}'.format(txt_data)) APP_ID = '15791531' API_KEY = 'kajyVlP73XtSGBgoXDIHH5Za' SECRET_KEY = 'u2TClEW6LaHIIpRNdFcL2HIexcgG1ovC' client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) txt_resp = client.antiSpam(str11) Logging.logger.info('txt_resp:{0}'.format(txt_resp)) for img in article_images: img_resp = client.imageCensorUserDefined(img) print(img_resp) Logging.logger.info('img_resp:{0}'.format(img_resp)) # img_data = obj.img_check(img) # print img_data return jsonify(errno=0, errmsg="OK", data=txt_data) except Exception as e: Logging.logger.error('errmsg:{0}'.format(e)) return jsonify(errno=-1, errmsg='文章详情查询失败')
def __init__(self, credential, bounds=(0, 255), channel_axis=3, preprocessing=(0, 1)): from aip import AipImageCensor super(AipAntiPornModel, self).__init__(credential=credential, bounds=bounds, channel_axis=channel_axis, preprocessing=preprocessing) self._task = 'cls' self.model = AipImageCensor(self._appId, self._apiKey, self._secretKey)
def picture_review(content): pic = re.findall(r"<img src=(.*?)data", content) h = 0 l = len(pic) client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) if l > 0: for i in range(l): url = pic[0][1:-2] result = client.imageCensorUserDefined(url) print(result) if len(result['conclusion']) == 2: h += 1 print("图片通过:%d") % h print("图片违规:%d") % (l - h) else: print("没有图片")
def baiduimg(s): """ 你的 APPID AK SK """ APP_ID = '14440883' API_KEY = 'kT8o0IxopsPwp8dswWCV54ww' SECRET_KEY = '8jPrgXlKj7c2mvDtkeqcTQe83RhdKLzV' client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() result = client.imageCensorUserDefined(get_file_content(r's1.' + s)) print(result) if str(result['conclusionType']) == '1': return ('1') else: return (result['data'][0]['msg'])
def repic(): from aip import AipImageCensor APP_ID = '10805647' API_KEY = '4BORuFSWdXtODzh8gjFVUzKB' SECRET_KEY = 'uZG60psAKFxRYZuqtQdTbree4ilaaPbB' client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) with open(os.getcwd() + "/tmp.png", 'rb') as fp: options = { 'detect_direction': 'true', 'language_type': 'CHN_ENG', } result = client.imageCensorComb(fp.read(), [ 'clarity', 'antiporn', ]) rrresult = json.dumps(result).decode("unicode-escape") print rrresult
def identity_picture(self, file_name, flag): """ :param file_name: 一个网络图片的url, 或者一个本地图片的地址 :param flag: 传送指定的参数‘url’ 或者 ‘local’ :return: """ s_client = AipImageCensor(self.APP_ID, self.API_KEY, self.SECRET_KEY) if flag == 'local': with open(file_name, 'rb') as f: try: res = s_client.imageCensorUserDefined(f.read()) print(res) except TypeError: raise print("类型错误") elif flag == 'url': res = s_client.imageCensorUserDefined(file_name) print(res)
def __init__(self): self.client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY)
def __init__(self, api): """ :param api: ['15052846', 'SiU9AAGaZn2Zja7d8iSVqce5', 'P6NZ07ROvKTXFnSlDMmH4hf1smOxbfAA'] """ self.api = api self.client = AipImageCensor(*self.api)
def get_check_json(cls, content): client = AipImageCensor(cls.APP_ID, cls.API_KEY, cls.SECRET_KEY) return client.antiSpam(content=content)
password=GlobalVar.get_value('g_redis_password'))) # https://www.vaptcha.com GlobalVar.set_value('g_vaptcha_id', '0') GlobalVar.set_value('g_vaptcha_secretkey', '0') websocket_clients = {} GlobalVar.set_value('g_websocket_clients', websocket_clients) # https://console.bce.baidu.com/ GlobalVar.set_value('g_baidu_APP_ID', '0') GlobalVar.set_value('g_baidu_API_KEY', '0') GlobalVar.set_value('g_baidu_APP_SECKEY', '0') GlobalVar.set_value( 'g_baidu_APP', AipImageCensor(GlobalVar.get_value('g_baidu_APP_ID'), GlobalVar.get_value('g_baidu_API_KEY'), GlobalVar.get_value('g_baidu_APP_SECKEY'))) websocket_urlpatterns = [ path('websocket/room/', web_socket.websocket_main), ] application = ProtocolTypeRouter({ 'websocket': AuthMiddlewareStack(URLRouter(websocket_urlpatterns)), }) urlpatterns = [ path('favicon.ico', serve, {'path': 'images/favicon.ico'}), path('ha4k1r_admin/', view.admin, name='admin_index'), path('bind_steam/', view.bind_steam, name='bind_steam'), re_path(r'^$', view.index, name='index'), re_path(r'^bind_steamid_process/(?P<key>\w+)/$', view.steam_login,
def jh(self, file_name): client = AipImageCensor(self.W_APP_ID, self.API_KEY, self.SECRET_KEY) res = client.imageCensorUserDefined(file_name) print(res)
def initspam(): global client1 APP_ID = '14422159' API_KEY = 'psxn324sUoqFaNMjyob3FaqN' SECRET_KEY = 'jakFwZEk63dTPr52ibznaBXoI0To2GEs' client1 = AipImageCensor(APP_ID, API_KEY, SECRET_KEY)
def check_Image(self, filepath): Image_client = AipImageCensor(self.APP_ID, self.API_KEY, self.SECRET_KEY) result = Image_client.imageCensorUserDefined(self.get_file_content(filepath)) return result
def __init__(self): self.client = AipImageCensor( current_app.config['APP_ID'], current_app.config['API_KEY'], current_app.config['SECRET_KEY'] )
def Check_Baidu(): imgContent, imgType = downloadImg(imgurl) if len(imgContent) < 5e3 or len(imgContent) > 4e6: return if imgType not in ['jpg', 'jpeg', 'png']: return from aip import AipImageCensor censor_APP_ID = '15708523' censor_API_KEY = '6USQY453ZVSjxYYej1F195IZ' censor_SECRET_KEY = 'r0rtrpRj8eHRnkPCfEhjOPRh2eO997Uv' #另一个百度账号 if random.random() < 0: censor_APP_ID = '22908418' censor_API_KEY = 'Fz2zsXkSFmdH4BgcSwvGLeNP' censor_SECRET_KEY = 'VSbOwvqUNzG1cDW89O9iTnnweLvLyGGM' #classify_APP_ID = '17981247' #classify_API_KEY = '3HuleW8fwIPymQcRM1DNhigp' #classify_SECRET_KEY = 'LcClAOmKwGSIXR2st8ishMXUPXkiLaaI' censor_client = AipImageCensor(censor_APP_ID, censor_API_KEY, censor_SECRET_KEY) censor_result = censor_client.antiPorn(imgContent) #print(censor_result) if 'result_fine' in censor_result: for each in censor_result['result_fine']: #print('type', each['type'], 'prob', each['probability']) if each['class_name'] == '一般色情' and each['probability'] > 0.9: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '卡通色情' and each['probability'] > 0.51: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == 'SM' and each['probability'] > 0.65: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '艺术品色情' and each['probability'] > 0.9: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '儿童裸露' and each['probability'] > 0.9: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '低俗' and each['probability'] > 0.95: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '性玩具' and each['probability'] > 0.7: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '女性性感' and each['probability'] > 0.85: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '卡通女性性感' and each['probability'] > 0.51: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '男性性感' and each['probability'] > 0.95: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '自然男性裸露' and each['probability'] > 0.95: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '亲密行为' and each['probability'] > 0.90: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '卡通亲密行为' and each['probability'] > 0.65: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '特殊类' and each['probability'] > 0.95: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '一般正常' and each['probability'] > 1.0: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '卡通正常' and each['probability'] > 1.0: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '臀部特写' and each['probability'] > 0.85: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '裆部特写' and each['probability'] > 0.75: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '脚部特写' and each['probability'] > 0.85: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '孕肚裸露' and each['probability'] > 0.99: print('色图!', end='') saveImg(imgurl) break
# # # """ 调用人体检测与属性识别 """ # clients.bodyAttr(image) # # # """ 如果有可选参数 """ # options = {} # options["age"] = "gender,age,upper_color" # # # """ 带参数调用人体检测与属性识别 """ # res = clients.bodyAttr(image, options) # # print(res) # c = res['person_info'][0]['attributes'] # # print(c) # for k,v in c.items(): # print(k,v['name']) # 图片鉴黄 s_client = AipImageCensor(APP_ID, API_KEY, SECRET_KEY) """ 读取图片 """ def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() """ 调用色情识别接口 """ result = s_client.imageCensorUserDefined( get_file_content('images/12345678.jpg')) print(result)
def downloadImg(url): r = requests.get(url) return r.content censor_APP_ID = '15708523' censor_API_KEY = '6USQY453ZVSjxYYej1F195IZ' censor_SECRET_KEY = 'r0rtrpRj8eHRnkPCfEhjOPRh2eO997Uv' #classify_APP_ID = '17981247' #classify_API_KEY = '3HuleW8fwIPymQcRM1DNhigp' #classify_SECRET_KEY = 'LcClAOmKwGSIXR2st8ishMXUPXkiLaaI' censor_client = AipImageCensor(censor_APP_ID, censor_API_KEY, censor_SECRET_KEY) censor_result = censor_client.antiPorn(downloadImg(imgurl)) print(censor_result) if 'result_fine' in censor_result: for each in censor_result['result_fine']: #print('type', each['type'], 'prob', each['probability']) if each['class_name'] == '一般色情' and each['probability'] > 0.9: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == '卡通色情' and each['probability'] > 0.55: print('色图!', end='') saveImg(imgurl) break elif each['class_name'] == 'SM' and each['probability'] > 0.65: