コード例 #1
0
def visualize_predictions(image_logger, max_samples, metric_fn, logits, gt):
    num_samples = min(len(gt), max_samples)
    metrics = to_numpy(
        metric_fn(from_numpy(logits), from_numpy(gt), average=False))
    order = np.argsort(metrics)
    gt = gt[order][:num_samples]
    logits = logits[order][:num_samples]
    metrics = metrics[order][:num_samples]
    probs = 1 / (1 + np.exp(-logits.squeeze()))

    samples_per_row = 16
    num_rows = int(np.ceil(num_samples / samples_per_row)) * 2
    plt.figure(figsize=(6, 1 * num_rows))

    for i in range(num_samples):
        plt.subplot(num_rows, samples_per_row,
                    (i // samples_per_row) * samples_per_row + i + 1)
        plt.title(f'{metrics[i]:.1f}')
        plt.imshow(probs[i], vmin=0, vmax=1)
        plt.xticks([])
        plt.yticks([])
        plt.subplot(num_rows, samples_per_row,
                    (i // samples_per_row + 1) * samples_per_row + i + 1)
        plt.imshow(gt[i])
        plt.xticks([])
        plt.yticks([])
    plt.gcf().tight_layout()
    plt.subplots_adjust(hspace=0.1, wspace=0.1)
    image_logger(plt.gcf())
コード例 #2
0
ファイル: predict.py プロジェクト: dumbo22/kaggle-airbus
def predict(checkpoint_path, batch_size=1, limit=None):
    model = load_checkpoint(checkpoint_path)
    model = as_cuda(model)
    torch.set_grad_enabled(False)
    model.eval()

    records = []
    ids = list(
        map(lambda path: path.split('/')[-1],
            get_images_in('data/test')))[:limit]
    test_generator = get_test_generator(batch_size, limit)
    for inputs, _ in tqdm(test_generator, total=len(test_generator)):
        inputs = from_numpy(inputs)
        outputs = model(inputs)
        masks = to_numpy(torch.argmax(outputs, dim=1))
        for mask in masks:
            _id = ids.pop(0)
            instance_masks = extract_instance_masks_from_binary_mask(mask)

            if len(instance_masks) == 0:
                records.append((_id, None))
            else:
                for instance_mask in instance_masks:
                    records.append((_id, encode_rle(instance_mask)))

    image_ids, encoded_pixels = zip(*records)
    df = pd.DataFrame({'ImageId': image_ids, 'EncodedPixels': encoded_pixels})
    df.to_csv('./data/submissions/__latest.csv', index=False)
コード例 #3
0
def predict(checkpoint_path, batch_size=1, limit=None, tta=False):
    model = load_checkpoint(checkpoint_path)
    model = as_cuda(model)
    torch.set_grad_enabled(False)
    model.eval()

    records = []
    ids = list(
        map(lambda path: path.split('/')[-1],
            get_images_in('data/test')))[:limit]
    test_generator = get_test_generator(batch_size, limit)
    for batch in tqdm(test_generator, total=len(test_generator)):
        batch = from_numpy(batch)
        masks = None
        if tta:
            accumulated_outputs = 0
            for i, should_flip in product(range(4), [False, True]):
                image_batch = batch['image']
                image_batch = rotate_image_batch(image_batch, i)
                if should_flip: image_batch = flip_image_batch(image_batch)

                outputs = torch.sigmoid(model({'image': image_batch})['mask'])
                if should_flip: outputs = flip_image_batch(outputs)
                outputs = rotate_image_batch(outputs, -i)
                accumulated_outputs += outputs
            accumulated_outputs /= 8
            masks = to_numpy(accumulated_outputs[:, 0, :, :])
        else:
            outputs = model(batch)
            outputs['mask'] = torch.sigmoid(outputs['mask'])
            masks = to_numpy(outputs['mask'][:, 0, :, :])
        for mask in masks:
            _id = ids.pop(0)
            instance_masks = extract_instance_masks_from_soft_mask(mask)

            if len(instance_masks) == 0:
                records.append((_id, None))
            else:
                for instance_mask in instance_masks:
                    records.append((_id, encode_rle(instance_mask)))

    image_ids, encoded_pixels = zip(*records)
    df = pd.DataFrame({'ImageId': image_ids, 'EncodedPixels': encoded_pixels})
    df.to_csv('./data/submissions/__latest.csv', index=False)
コード例 #4
0
def predict(checkpoint_path,
            submission_path,
            batch_size=1,
            limit=None,
            tta=False):
    model = load_checkpoint(checkpoint_path)
    model = as_cuda(model)
    torch.set_grad_enabled(False)
    model.eval()

    records = []
    ids = list(
        map(lambda path: path.split('/')[-1],
            get_images_in('data/test')))[:limit]
    submission = pd.read_csv(submission_path)
    print('Num masks before', len(submission))
    test_generator = get_test_generator(batch_size, limit, classification=True)
    for batch in tqdm(test_generator, total=len(test_generator)):
        batch = from_numpy(batch)
        outputs = model(batch)
        if tta:
            batch['image'] = batch['image'].flip(dims=(3, ))
            flipped_outputs = model(batch)
            outputs['has_ships'] = (
                torch.sigmoid(outputs['has_ships']) +
                torch.sigmoid(flipped_outputs['has_ships'])) / 2
        else:
            outputs['has_ships'] = torch.sigmoid(outputs['has_ships'])
        pred_labels = to_numpy(outputs['has_ships'][:, 0].round().long())

        for pred in pred_labels:
            _id = ids.pop(0)
            if pred == 1: continue
            submission = submission[submission['ImageId'] != _id].copy()
            submission = submission.append(
                {
                    'ImageId': _id,
                    'EncodedPixels': None
                }, ignore_index=True)
    print('Num masks after', len(submission))
    submission.to_csv('./data/submissions/__latest_filtered.csv', index=False)
コード例 #5
0
def fit_model(model,
              train_generator,
              validation_generator,
              optimizer,
              loss_fn,
              num_epochs,
              logger,
              callbacks=[],
              metrics=[]):

    for epoch in tqdm(range(num_epochs)):
        num_batches = len(train_generator)
        logs = {}
        logs['train_loss'] = 0
        for func in metrics:
            logs[f'train_{func.__name__}'] = 0
        model.train()
        torch.set_grad_enabled(True)
        for callback in callbacks:
            callback.on_train_begin()
        for inputs, gt in tqdm(train_generator, total=num_batches):
            inputs, gt = from_numpy(inputs), from_numpy(gt)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_fn(outputs, gt)
            loss.backward()
            optimizer.step()
            logs['train_loss'] += loss.data[0]
            for func in metrics:
                logs[f'train_{func.__name__}'] += func(outputs.detach(), gt)
            for callback in callbacks:
                callback.on_train_batch_end(loss.data[0])

        logs['train_loss'] /= num_batches
        for func in metrics:
            logs[f'train_{func.__name__}'] /= num_batches

        logs['val_loss'] = 0
        for func in metrics:
            logs[f'val_{func.__name__}'] = 0
        all_outputs = []
        all_gt = []
        num_batches = len(validation_generator)
        model.eval()
        torch.set_grad_enabled(False)
        for inputs, gt in tqdm(validation_generator, total=num_batches):
            all_gt.append(gt)
            inputs, gt = from_numpy(inputs), from_numpy(gt)
            outputs = model(inputs)
            # TODO AS: Extract as cmd opt
            flipped_outputs = torch.sigmoid(
                model(inputs.flip(dims=(3, ))).flip(dims=(3, )))
            outputs = torch.sigmoid(outputs)
            outputs = (outputs + flipped_outputs) / 2
            outputs = torch.log(outputs / (1 - outputs))
            logs['val_loss'] += loss_fn(outputs, gt).data[0]
            for func in metrics:
                logs[f'val_{func.__name__}'] += func(outputs.detach(), gt)

            if isinstance(outputs, tuple):
                all_outputs.append(list(map(to_numpy, outputs)))
            else:
                all_outputs.append(to_numpy(outputs))
        logs['val_loss'] /= num_batches
        for func in metrics:
            logs[f'val_{func.__name__}'] /= num_batches

        if isinstance(all_outputs[0], tuple):
            all_outputs = list(map(np.concatenate, zip(*all_outputs)))
        else:
            all_outputs = np.concatenate(all_outputs)

        all_gt = np.concatenate(all_gt)
        for callback in callbacks:
            callback.on_validation_end(logs, all_outputs, all_gt)

        epoch_rows = [['epoch', epoch]]
        for name, value in logs.items():
            epoch_rows.append([name, f'{value:.3f}'])

        logger(tabulate(epoch_rows))
コード例 #6
0
def fit_model(
        model,
        train_generator,
        validation_generator,
        optimizer,
        loss_fn,
        num_epochs,
        logger,
        callbacks=[],
        metrics=[],
        steps_per_epoch=None
    ):

    if steps_per_epoch is None:
        steps_per_epoch = len(train_generator)

    train_generator = looped(train_generator)

    for epoch in tqdm(range(num_epochs)):
        num_batches = steps_per_epoch
        logs = {}
        logs['train_loss'] = 0
        for func in metrics: logs[f'train_{func.__name__}'] = 0
        model.train()
        torch.set_grad_enabled(True)
        for callback in callbacks: callback.on_train_begin(logs)

        for i in tqdm(range(num_batches)):
            batch = from_numpy(next(train_generator))
            optimizer.zero_grad()
            outputs = model(batch)
            loss = loss_fn(outputs, batch)
            loss.backward()
            optimizer.step()
            logs['train_loss'] += loss.data[0]
            logs['batch_loss'] = loss.data[0]
            for func in metrics: logs[f'train_{func.__name__}'] += func(outputs, batch)
            for callback in callbacks: callback.on_train_batch_end(logs, outputs, batch)

        logs.pop('batch_loss')
        logs['train_loss'] /= num_batches
        for func in metrics: logs[f'train_{func.__name__}'] /= num_batches

        logs['val_loss'] = 0
        for func in metrics: logs[f'val_{func.__name__}'] = 0
        num_batches = len(validation_generator)
        model.eval()
        torch.set_grad_enabled(False)
        for batch in tqdm(validation_generator, total=num_batches):
            batch = from_numpy(batch)
            outputs = model(batch)
            logs['val_loss'] += loss_fn(outputs, batch).data[0]
            for func in metrics: logs[f'val_{func.__name__}'] += func(outputs, batch)
            for callback in callbacks: callback.on_validation_batch_end(logs, outputs, batch)
        logs['val_loss'] /= num_batches
        for func in metrics: logs[f'val_{func.__name__}'] /= num_batches
        for callback in callbacks: callback.on_validation_end(logs)

        epoch_rows = [['epoch', epoch]]
        for name, value in logs.items():
            epoch_rows.append([name, f'{value:.3f}'])

        logger(tabulate(epoch_rows))
コード例 #7
0
ファイル: histogram.py プロジェクト: dumbo22/kaggle-airbus
 def on_validation_end(self, logs, outputs, gt):
     values = to_numpy(
         self.metric_fn(from_numpy(outputs), from_numpy(gt), average=False))
     plt.hist(values, bins=20)
     plt.title(self.metric_fn.__name__)
     self.image_logger(plt.gcf())