def test_success(self, mock_hook): task = MLEngineCreateVersionOperator( task_id="task-id", project_id=TEST_PROJECT_ID, model_name=TEST_MODEL_NAME, version=TEST_VERSION, gcp_conn_id=TEST_GCP_CONN_ID, delegate_to=TEST_DELEGATE_TO, ) task.execute(None) mock_hook.assert_called_once_with(delegate_to=TEST_DELEGATE_TO, gcp_conn_id=TEST_GCP_CONN_ID) mock_hook.return_value.create_version.assert_called_once_with( project_id=TEST_PROJECT_ID, model_name=TEST_MODEL_NAME, version_spec=TEST_VERSION)
def test_missing_version(self): with self.assertRaises(AirflowException): MLEngineCreateVersionOperator( task_id="task-id", project_id=TEST_PROJECT_ID, model_name=TEST_MODEL_NAME, version=None, gcp_conn_id=TEST_GCP_CONN_ID, delegate_to=TEST_DELEGATE_TO, )
model={ "name": MODEL_NAME, }) get_model_result = BashOperator( bash_command="echo \"{{ task_instance.xcom_pull('get-model') }}\"", task_id="get-model-result", ) create_version = MLEngineCreateVersionOperator( task_id="create-version", project_id=PROJECT_ID, model_name=MODEL_NAME, version={ "name": "v1", "description": "First-version", "deployment_uri": '{}/keras_export/'.format(JOB_DIR), "runtime_version": "1.14", "machineType": "mls1-c1-m2", "framework": "TENSORFLOW", "pythonVersion": "3.5" }) create_version_2 = MLEngineCreateVersionOperator( task_id="create-version-2", project_id=PROJECT_ID, model_name=MODEL_NAME, version={ "name": "v2", "description": "Second version", "deployment_uri": SAVED_MODEL_PATH,