def test_success(self, mock_hook): task = MLEngineDeleteVersionOperator( task_id="task-id", project_id=TEST_PROJECT_ID, model_name=TEST_MODEL_NAME, version_name=TEST_VERSION_NAME, gcp_conn_id=TEST_GCP_CONN_ID, delegate_to=TEST_DELEGATE_TO, ) task.execute(None) mock_hook.assert_called_once_with(delegate_to=TEST_DELEGATE_TO, gcp_conn_id=TEST_GCP_CONN_ID) mock_hook.return_value.delete_version.assert_called_once_with( project_id=TEST_PROJECT_ID, model_name=TEST_MODEL_NAME, version_name=TEST_VERSION_NAME)
def test_missing_model_name(self): with self.assertRaises(AirflowException): MLEngineDeleteVersionOperator( task_id="task-id", project_id=TEST_PROJECT_ID, model_name=None, version_name=TEST_VERSION_NAME, gcp_conn_id=TEST_GCP_CONN_ID, delegate_to=TEST_DELEGATE_TO, )
task_id="list-version-result", ) prediction = MLEngineBatchPredictionOperator( task_id="prediction", project_id="polidea-airflow", job_id="prediciton-{{ ts_nodash }}-{{ params.model_name }}", region="us-central1", model_name=MODEL_NAME, data_format="TEXT", input_paths=[PREDICTION_INPUT], output_path=PREDICTION_OUTPUT, ) delete_version = MLEngineDeleteVersionOperator(task_id="delete-version", project_id=PROJECT_ID, model_name=MODEL_NAME, version_name="v1") delete_model = MLEngineDeleteModelOperator(task_id="delete-model", project_id=PROJECT_ID, model_name=MODEL_NAME, delete_contents=True) training >> create_version training >> create_version_2 create_model >> get_model >> get_model_result create_model >> create_version >> create_version_2 >> set_defaults_version >> list_version create_version >> prediction create_version_2 >> prediction prediction >> delete_version list_version >> list_version_result