def setup_logging(filename): """Creates log file handler for daemon process""" root = logging.getLogger() handler = NonCachingFileHandler(filename) formatter = logging.Formatter(settings.SIMPLE_LOG_FORMAT) handler.setFormatter(formatter) root.addHandler(handler) root.setLevel(settings.LOGGING_LEVEL) return handler.stream
class FileTaskHandler(logging.Handler): """ FileTaskHandler is a python log handler that handles and reads task instance logs. It creates and delegates log handling to `logging.FileHandler` after receiving task instance context. It reads logs from task instance's host machine. :param base_log_folder: Base log folder to place logs. :param filename_template: template filename string """ def __init__(self, base_log_folder: str, filename_template: Optional[str] = None): super().__init__() self.handler: Optional[logging.FileHandler] = None self.local_base = base_log_folder if filename_template is not None: warnings.warn( "Passing filename_template to a log handler is deprecated and has no effect", DeprecationWarning, # We want to reference the stack that actually instantiates the # handler, not the one that calls super()__init__. stacklevel=(2 if type(self) == FileTaskHandler else 3), ) def set_context(self, ti: "TaskInstance"): """ Provide task_instance context to airflow task handler. :param ti: task instance object """ local_loc = self._init_file(ti) self.handler = NonCachingFileHandler(local_loc, encoding='utf-8') if self.formatter: self.handler.setFormatter(self.formatter) self.handler.setLevel(self.level) def emit(self, record): if self.handler: self.handler.emit(record) def flush(self): if self.handler: self.handler.flush() def close(self): if self.handler: self.handler.close() def _render_filename(self, ti: "TaskInstance", try_number: int) -> str: with create_session() as session: dag_run = ti.get_dagrun(session=session) template = dag_run.get_log_template(session=session).filename str_tpl, jinja_tpl = parse_template_string(template) if jinja_tpl: if hasattr(ti, "task"): context = ti.get_template_context() else: context = Context(ti=ti, ts=dag_run.logical_date.isoformat()) context["try_number"] = try_number return render_template_to_string(jinja_tpl, context) elif str_tpl: try: dag = ti.task.dag except AttributeError: # ti.task is not always set. data_interval = (dag_run.data_interval_start, dag_run.data_interval_end) else: if TYPE_CHECKING: assert dag is not None data_interval = dag.get_run_data_interval(dag_run) if data_interval[0]: data_interval_start = data_interval[0].isoformat() else: data_interval_start = "" if data_interval[1]: data_interval_end = data_interval[1].isoformat() else: data_interval_end = "" return str_tpl.format( dag_id=ti.dag_id, task_id=ti.task_id, run_id=ti.run_id, data_interval_start=data_interval_start, data_interval_end=data_interval_end, execution_date=ti.get_dagrun().logical_date.isoformat(), try_number=try_number, ) else: raise RuntimeError(f"Unable to render log filename for {ti}. This should never happen") def _read_grouped_logs(self): return False def _read(self, ti, try_number, metadata=None): """ Template method that contains custom logic of reading logs given the try_number. :param ti: task instance record :param try_number: current try_number to read log from :param metadata: log metadata, can be used for steaming log reading and auto-tailing. :return: log message as a string and metadata. """ # Task instance here might be different from task instance when # initializing the handler. Thus explicitly getting log location # is needed to get correct log path. log_relative_path = self._render_filename(ti, try_number) location = os.path.join(self.local_base, log_relative_path) log = "" if os.path.exists(location): try: with open(location, encoding="utf-8", errors="surrogateescape") as file: log += f"*** Reading local file: {location}\n" log += "".join(file.readlines()) except Exception as e: log = f"*** Failed to load local log file: {location}\n" log += f"*** {str(e)}\n" elif conf.get('core', 'executor') == 'KubernetesExecutor': try: from airflow.kubernetes.kube_client import get_kube_client kube_client = get_kube_client() if len(ti.hostname) >= 63: # Kubernetes takes the pod name and truncates it for the hostname. This truncated hostname # is returned for the fqdn to comply with the 63 character limit imposed by DNS standards # on any label of a FQDN. pod_list = kube_client.list_namespaced_pod(conf.get('kubernetes', 'namespace')) matches = [ pod.metadata.name for pod in pod_list.items if pod.metadata.name.startswith(ti.hostname) ] if len(matches) == 1: if len(matches[0]) > len(ti.hostname): ti.hostname = matches[0] log += f'*** Trying to get logs (last 100 lines) from worker pod {ti.hostname} ***\n\n' res = kube_client.read_namespaced_pod_log( name=ti.hostname, namespace=conf.get('kubernetes', 'namespace'), container='base', follow=False, tail_lines=100, _preload_content=False, ) for line in res: log += line.decode() except Exception as f: log += f'*** Unable to fetch logs from worker pod {ti.hostname} ***\n{str(f)}\n\n' else: import httpx url = os.path.join("http://{ti.hostname}:{worker_log_server_port}/log", log_relative_path).format( ti=ti, worker_log_server_port=conf.get('logging', 'WORKER_LOG_SERVER_PORT') ) log += f"*** Log file does not exist: {location}\n" log += f"*** Fetching from: {url}\n" try: timeout = None # No timeout try: timeout = conf.getint('webserver', 'log_fetch_timeout_sec') except (AirflowConfigException, ValueError): pass signer = JWTSigner( secret_key=conf.get('webserver', 'secret_key'), expiration_time_in_seconds=conf.getint( 'webserver', 'log_request_clock_grace', fallback=30 ), audience="task-instance-logs", ) response = httpx.get( url, timeout=timeout, headers={b'Authorization': signer.generate_signed_token({"filename": log_relative_path})}, ) response.encoding = "utf-8" if response.status_code == 403: log += ( "*** !!!! Please make sure that all your Airflow components (e.g. " "schedulers, webservers and workers) have " "the same 'secret_key' configured in 'webserver' section and " "time is synchronized on all your machines (for example with ntpd) !!!!!\n***" ) log += ( "*** See more at https://airflow.apache.org/docs/apache-airflow/" "stable/configurations-ref.html#secret-key\n***" ) # Check if the resource was properly fetched response.raise_for_status() log += '\n' + response.text except Exception as e: log += f"*** Failed to fetch log file from worker. {str(e)}\n" return log, {'end_of_log': True} def read(self, task_instance, try_number=None, metadata=None): """ Read logs of given task instance from local machine. :param task_instance: task instance object :param try_number: task instance try_number to read logs from. If None it returns all logs separated by try_number :param metadata: log metadata, can be used for steaming log reading and auto-tailing. :return: a list of listed tuples which order log string by host """ # Task instance increments its try number when it starts to run. # So the log for a particular task try will only show up when # try number gets incremented in DB, i.e logs produced the time # after cli run and before try_number + 1 in DB will not be displayed. if try_number is None: next_try = task_instance.next_try_number try_numbers = list(range(1, next_try)) elif try_number < 1: logs = [ [('default_host', f'Error fetching the logs. Try number {try_number} is invalid.')], ] return logs, [{'end_of_log': True}] else: try_numbers = [try_number] logs = [''] * len(try_numbers) metadata_array = [{}] * len(try_numbers) for i, try_number_element in enumerate(try_numbers): log, metadata = self._read(task_instance, try_number_element, metadata) # es_task_handler return logs grouped by host. wrap other handler returning log string # with default/ empty host so that UI can render the response in the same way logs[i] = log if self._read_grouped_logs() else [(task_instance.hostname, log)] metadata_array[i] = metadata return logs, metadata_array def _init_file(self, ti): """ Create log directory and give it correct permissions. :param ti: task instance object :return: relative log path of the given task instance """ # To handle log writing when tasks are impersonated, the log files need to # be writable by the user that runs the Airflow command and the user # that is impersonated. This is mainly to handle corner cases with the # SubDagOperator. When the SubDagOperator is run, all of the operators # run under the impersonated user and create appropriate log files # as the impersonated user. However, if the user manually runs tasks # of the SubDagOperator through the UI, then the log files are created # by the user that runs the Airflow command. For example, the Airflow # run command may be run by the `airflow_sudoable` user, but the Airflow # tasks may be run by the `airflow` user. If the log files are not # writable by both users, then it's possible that re-running a task # via the UI (or vice versa) results in a permission error as the task # tries to write to a log file created by the other user. relative_path = self._render_filename(ti, ti.try_number) full_path = os.path.join(self.local_base, relative_path) directory = os.path.dirname(full_path) # Create the log file and give it group writable permissions # TODO(aoen): Make log dirs and logs globally readable for now since the SubDag # operator is not compatible with impersonation (e.g. if a Celery executor is used # for a SubDag operator and the SubDag operator has a different owner than the # parent DAG) Path(directory).mkdir(mode=0o777, parents=True, exist_ok=True) if not os.path.exists(full_path): open(full_path, "a").close() # TODO: Investigate using 444 instead of 666. try: os.chmod(full_path, 0o666) except OSError: logging.warning("OSError while change ownership of the log file") return full_path
class FileProcessorHandler(logging.Handler): """ FileProcessorHandler is a python log handler that handles dag processor logs. It creates and delegates log handling to `logging.FileHandler` after receiving dag processor context. :param base_log_folder: Base log folder to place logs. :param filename_template: template filename string """ def __init__(self, base_log_folder, filename_template): super().__init__() self.handler = None self.base_log_folder = base_log_folder self.dag_dir = os.path.expanduser(settings.DAGS_FOLDER) self.filename_template, self.filename_jinja_template = parse_template_string(filename_template) self._cur_date = datetime.today() Path(self._get_log_directory()).mkdir(parents=True, exist_ok=True) self._symlink_latest_log_directory() def set_context(self, filename): """ Provide filename context to airflow task handler. :param filename: filename in which the dag is located """ local_loc = self._init_file(filename) self.handler = NonCachingFileHandler(local_loc) self.handler.setFormatter(self.formatter) self.handler.setLevel(self.level) if self._cur_date < datetime.today(): self._symlink_latest_log_directory() self._cur_date = datetime.today() def emit(self, record): if self.handler is not None: self.handler.emit(record) def flush(self): if self.handler is not None: self.handler.flush() def close(self): if self.handler is not None: self.handler.close() def _render_filename(self, filename): # Airflow log path used to be generated by `os.path.relpath(filename, self.dag_dir)`, however all DAGs # in airflow source code are not located in the DAG dir as other DAGs. # That will create a log filepath which is not under control since it could be outside # of the log dir. The change here is to make sure the log path for DAGs in airflow code # is always inside the log dir as other DAGs. To be differentiate with regular DAGs, # their logs will be in the `log_dir/native_dags`. import airflow airflow_directory = airflow.__path__[0] if filename.startswith(airflow_directory): filename = os.path.join("native_dags", os.path.relpath(filename, airflow_directory)) else: filename = os.path.relpath(filename, self.dag_dir) ctx = {'filename': filename} if self.filename_jinja_template: return self.filename_jinja_template.render(**ctx) return self.filename_template.format(filename=ctx['filename']) def _get_log_directory(self): now = datetime.utcnow() return os.path.join(self.base_log_folder, now.strftime("%Y-%m-%d")) def _symlink_latest_log_directory(self): """ Create symbolic link to the current day's log directory to allow easy access to the latest scheduler log files. :return: None """ log_directory = self._get_log_directory() latest_log_directory_path = os.path.join(self.base_log_folder, "latest") if os.path.isdir(log_directory): try: # if symlink exists but is stale, update it if os.path.islink(latest_log_directory_path): if os.readlink(latest_log_directory_path) != log_directory: os.unlink(latest_log_directory_path) os.symlink(log_directory, latest_log_directory_path) elif os.path.isdir(latest_log_directory_path) or os.path.isfile(latest_log_directory_path): logging.warning( "%s already exists as a dir/file. Skip creating symlink.", latest_log_directory_path ) else: os.symlink(log_directory, latest_log_directory_path) except OSError: logging.warning("OSError while attempting to symlink the latest log directory") def _init_file(self, filename): """ Create log file and directory if required. :param filename: task instance object :return: relative log path of the given task instance """ relative_log_file_path = os.path.join(self._get_log_directory(), self._render_filename(filename)) log_file_path = os.path.abspath(relative_log_file_path) directory = os.path.dirname(log_file_path) Path(directory).mkdir(parents=True, exist_ok=True) if not os.path.exists(log_file_path): open(log_file_path, "a").close() return log_file_path