コード例 #1
0
    def test_transform(self):
        main_transformer = MainTransformer(config=config)
        result_weather = main_transformer.add_transformer(
            Transformers.WEATHER_TRANSFORMER)
        result_pollutant = main_transformer.add_transformer(
            Transformers.POLLUTANT_TRANSFORMER)
        weather_size = len(config['weather'].keys())
        pollutant_size = len(config['pollutant'].keys())

        main_transformer.transform()
        dataset = main_transformer.get_dataset()

        assert weather_size + pollutant_size == dataset.shape[1]
コード例 #2
0
    def test_train_and_test(self, uncertainty):
        global dataset

        data_transformer = MainTransformer(config=ConfigReader.CONFIG)
        data_transformer.add_transformer(Transformers.WEATHER_TRANSFORMER)
        data_transformer.add_transformer(Transformers.POLLUTANT_TRANSFORMER)
        data_transformer.transform()
        dataset = data_transformer.get_dataset()

        complete_dataset = dataset.dropna(inplace=False)
        MainTransformer.periodic_f(complete_dataset)

        X_train_set, y_train_set, X_test, y_test, stats = MainTransformer.get_training_and_test_set(dataset,
                                                                                                    'Pollutant',
                                                                                                    'Uncertainty',
                                                                                                    size=0.8,
                                                                                                    normalize=True)

        print(np.array(X_train_set))
        print(y_train_set)

        # X_train_set, y_train_set, X_test, y_test, stats = MainTransformer.get_training_and_test_set(complete_dataset,
        #                                                                                             'Pollutant',
        #                                                                                             'Uncertainty',
        #                                                                                             size=0.8,
        #                                                                                             normalize=True)
        #
        # print(np.array(X_train_set))
        # print(X_train_set)
        # print(y_train_set)

        gp = SparseGaussianProcesses()
        gp.train(X_train_set, y_train_set, stats=stats)

        assert gp.stats['n_instances_trained'] == X_train_set.shape[0]
        assert gp.stats['dataset_stats'] == stats

        predictions = gp.predict(X_test, uncertainty=uncertainty)

        assert len(predictions) == X_test.shape[0]

        if uncertainty:
            values_without_uncertainty = list(filter(lambda x: len(x) != 2, predictions))
            assert len(values_without_uncertainty) == 0

        if not isinstance(uncertainty, bool):
            assert len(list(filter(lambda x: not isinstance(x, tuple), predictions))) == X_test.shape[0]