def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: # Reset the drone client.reset() client.enableApiControl(True) client.armDisarm(True) # Draw the ROI outline (erasing previous plots) client.simFlushPersistentMarkers() if SHOW_PLOTS: client.simPlotLineStrip(points=args.roi.corners(repeat_first=True), is_persistent=True) # Get the first position the drone will fly to initial_pose = client.simGetVehiclePose() closest_corner = args.roi.closest_corner(initial_pose.position) if args.verbose: ff.print_pose(initial_pose, airsim.to_eularian_angles) ff.log_info(f"Closest corner {ff.to_xyz_str(closest_corner)}") start_pos = Vector3r( *ff.to_xyz_tuple(closest_corner if args.corner else args.roi.center)) # NOTE AirSim uses NED coordinates, so negative Z values are "up" actually if (z := args.z_offset): start_pos.z_val -= z # start higher up, to avoid crashing with objects
def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: if args.flush: client.simFlushPersistentMarkers() if not args.transformation: poses = [ Pose(record.position, record.orientation) for record in args.recording.values() ] positions = [record.position for record in args.recording.values()] else: matrix = np.loadtxt( args.transformation) # load the 4x4 transformation matrix print(matrix) poses = [] positions = [] for record in args.recording.values(): pos = Vector3r(*np.matmul(matrix, np.append(record.position, 1))) poses.append(Pose(pos, record.orientation)) positions = [pos] if args.axes: client.simPlotTransforms(poses, scale=100.0, thickness=2.5, is_persistent=True) else: client.simPlotPoints(positions, args.color, size=10, is_persistent=True) if args.lines: client.simPlotLineStrip(positions, args.color, thickness=2.5, is_persistent=True) if args.aim: line_list = [] for pose in poses: line_list.append(pose.position) x_axis, _, _ = AirSimNedTransform.local_axes_frame(pose) line_list.append(pose.position + x_axis * 100) client.simPlotLineList(line_list, args.color, thickness=2.5, is_persistent=True)
def fly_zone(client: airsim.MultirotorClient, zone: Rect, altitude_shift: float = 0.0) -> None: path = [ Vector3r(corner.x_val, corner.y_val, corner.z_val - altitude_shift) for corner in zone.corners(repeat_first=True) ] if AUGMENT_PATHS: path = Controller.augment_path(path, max_dist=2) if SHOW_PLOTS: client.simPlotPoints(points=path, is_persistent=True, color_rgba=Rgba.White, size=5) client.simPlotLineStrip(points=path, is_persistent=True, color_rgba=Rgba.White) # Controller.fly_path(client, path) ##client.moveOnPathAsync(path, velocity=2).join() # XXX testing.. stretching Rect, zigzagging path and flying over it zz_path = Rect( Vector3r(0, 0, -altitude_shift) + zone.center, # Vector3r(0, 0, -altitude_shift) + zone.half_width * 4, # Vector3r(0, 0, -altitude_shift) + zone.half_height * 4, zone.half_width * 2, zone.half_height * 2, ).zigzag(4) if AUGMENT_PATHS: zz_path = Controller.augment_path(zz_path, max_dist=2) if SHOW_PLOTS: client.simPlotPoints(points=zz_path, is_persistent=True, color_rgba=Rgba.White, size=5) client.simPlotLineStrip(points=zz_path, is_persistent=True, color_rgba=Rgba.Green) Controller.fly_path( client, zz_path) ##client.moveOnPathAsync(zz_path, velocity=2).join()
def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: if args.flush: client.simFlushPersistentMarkers() def pose_from_meshroom_to_airsim(meshroom_pose): assert len(meshroom_pose.center) == 3 and len( meshroom_pose.rotation) == 9, meshroom_pose xyzw = MeshroomTransform.rotation(meshroom_pose.rotation, as_xyzw_quaternion=True) return Pose(Vector3r(*meshroom_pose.center), Quaternionr(*xyzw)) poses = [ pose_from_meshroom_to_airsim(pose) for pose in args.poses_dict.values() ] positions = [pose.position for pose in poses] if args.axes: client.simPlotTransforms(poses, scale=75.0, thickness=2.5, is_persistent=True) else: client.simPlotPoints(positions, args.color, size=10, is_persistent=True) if args.lines: client.simPlotLineStrip(positions, args.color, thickness=2.5, is_persistent=True) if args.transformation: meshroom_to_airsim = np.loadtxt( args.transformation) # load the 4x4 transformation matrix print(meshroom_to_airsim) def align_meshroom_to_airsim(meshroom_pose, meshroom_to_airsim_transform): # NOTE this transformation is only based on the positions (and not on the orientations) meshroom_pos = np.append(meshroom_pose.position.to_numpy_array(), 1) # [x, y, z, 1] airsim_pos = np.matmul(meshroom_to_airsim_transform, meshroom_pos) return Pose(Vector3r(*airsim_pos), meshroom_pose.orientation) aligned_poses = [ align_meshroom_to_airsim(pose, meshroom_to_airsim) for pose in poses ] aligned_positions = [pose.position for pose in aligned_poses] if args.axes: client.simPlotTransforms(aligned_poses, scale=75.0, thickness=2.5, is_persistent=True) else: client.simPlotPoints(aligned_positions, args.color, size=10, is_persistent=True) if args.lines: client.simPlotLineStrip(positions, args.color, thickness=2.5, is_persistent=True)
def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: initial_pose = client.simGetVehiclePose() if args.verbose: ff.print_pose(initial_pose, airsim.to_eularian_angles) ff.log(client.simGetCameraInfo(camera_name=CAPTURE_CAMERA)) if args.flush or (args.capture_dir and not args.debug): client.simFlushPersistentMarkers() camera_poses = [] for camera in args.trajectory: position = convert_uavmvs_to_airsim_position( camera.position, translation=args.offset, scaling=args.scale ) orientation = quaternion_orientation_from_eye_to_look_at(position, LOOK_AT_TARGET) camera_poses.append(Pose(position, orientation)) if args.debug: camera_positions = [pose.position for pose in camera_poses] client.simPlotPoints(camera_positions, Rgba.Blue, is_persistent=True) client.simPlotLineStrip(camera_positions, Rgba.Cyan, thickness=2.5, is_persistent=True) airsim_record = [] def do_stuff_at_uavmvs_viewpoint(i, pose): nonlocal client, camera_poses, airsim_record log_string = f"({i}/{len(camera_poses)})" p, q = pose.position, pose.orientation if args.debug: log_string += f" position = {to_xyz_str(p)}" client.simPlotTransforms([pose], scale=100, is_persistent=True) # client.simPlotArrows([p], [LOOK_AT_TARGET], Rgba.White, thickness=3.0, duration=10) elif args.capture_dir: path = f"{args.prefix}pose{args.suffix}_{i:0{len(str(len(camera_poses)))}}.png" path = os.path.join(args.capture_dir, path) airsim.write_png(path, AirSimImage.get_mono(client, CAPTURE_CAMERA)) log_string += f' saved image to "{path}"' record_line = AirSimRecord.make_line_string(p, q, time_stamp=str(i), image_file=path) airsim_record.append(record_line) ff.log(log_string) if IS_CV_MODE: for i, camera_pose in enumerate(camera_poses): client.simSetVehiclePose(camera_pose, ignore_collision=True) do_stuff_at_uavmvs_viewpoint(i, camera_pose) time.sleep(CV_SLEEP_SEC) else: client.moveToZAsync(z=-10, velocity=VELOCITY).join() # XXX avoid colliding on take off client.hoverAsync().join() mean_position_error = 0.0 for i, camera_pose in enumerate(camera_poses): client.moveToPositionAsync( *to_xyz_tuple(camera_pose.position), velocity=VELOCITY, drivetrain=DrivetrainType.MaxDegreeOfFreedom, yaw_mode=YawMode(is_rate=False, yaw_or_rate=YAW_N), ).join() with pose_at_simulation_pause(client) as real_pose: # NOTE when we pre-compute the viewpoint's camera orientation, we use the # expected drone position, which (should be close, but) is not the actual # drone position. Hence, we could experiment with using fake orientation: # quaternion_orientation_from_eye_to_look_at(real_pose.position, LOOK_AT_TARGET) fake_pose = Pose(real_pose.position, camera_pose.orientation) client.simSetVehiclePose(fake_pose, ignore_collision=True) client.simContinueForFrames(1) # NOTE ensures pose change do_stuff_at_uavmvs_viewpoint(i, fake_pose) client.simSetVehiclePose(real_pose, ignore_collision=True) position_error = real_pose.position.distance_to(camera_pose.position) mean_position_error += position_error ff.log_debug(f"{position_error = }") mean_position_error /= len(camera_poses) ff.log_debug(f"{mean_position_error = }") if airsim_record: print_to_file = args.record_path is not None file = open(args.record_path, "w") if print_to_file else None print(AirSimRecord.make_header_string(), file=(file if print_to_file else sys.stdout)) for line in airsim_record: print(line, file=(file if print_to_file else sys.stdout)) if print_to_file: file.close() ff.log_info(f'Saved AirSim record to "{args.record_path}"')
def fly(client: airsim.MultirotorClient, args: argparse.Namespace) -> None: # TODO verify we are in "ComputerVision" mode # if (sim_mode := ff.curr_sim_mode()) != ff.SimMode.ComputerVision: # assert False, f"Please change the SimMode from '{sim_mode}' to 'ComputerVision'" if args.roi is not None: if args.verbose: ff.log_info(f"Loading ROI from '{args.roi}'\n") with open(args.roi, "r") as f: zone = Rect.from_dump(f.read()) else: zone = Rect(Vector3r(), Vector3r(0, 10, 0), Vector3r(10, 0, 0)) # repeat the first coordinate to close the line strip client.simPlotLineStrip(points=zone.corners(repeat_first=True), is_persistent=True) # available keys (i.e. not used by AirSim) # ,----------------------------------------------------------------------------------------. # | ` | | | | 4 | 5 | 6 | 7 | 8 | 9 | | -* | = | | # |----------------------------------------------------------------------------------------+ # | Tab | | | | | | Y | U | I* | O | P | [ | ] | | # |----------------------------------------------------------------------------------------+ # | CpsLck | | | | | G | H | J | K* | L | | ' | Enter | # |----------------------------------------------------------------------------------------+ # | Shift | Z | X | C | V | | N | | , | . | | Shift | # `----------------------------------------------------------------------------------------' ff.log("Use [z], [x], [c], [v] to move the region of interest (ROI)") ff.log("Press [lshift] to swap editing modes (translating, scaling)") ff.log("Press [rshift] to save the current ROI to json") edit_mode = EditMode.TRANSLATING # define keyboard callbacks swap_mode_key = keyboard.Key.shift_l save_rect_key = keyboard.Key.shift_r def on_press(key): nonlocal edit_mode, swap_mode_key, zone client.simPrintLogMessage("ROI coordinates: ", message_param=str(zone)) if key == swap_mode_key: edit_mode = EditMode.next(edit_mode, skip_rotation=True) client.simPrintLogMessage("Current edit mode: ", message_param=edit_mode.name) elif key == save_rect_key: filename = save_zone(args.outputdir, zone) client.simPrintLogMessage(f"Saved ROI coordinates to '{filename}'") if args.verbose: ff.log_info(f"Saved ROI coordinates to '{filename}'") elif edit_zone(key, edit_mode, zone): client.simFlushPersistentMarkers() client.simPlotLineStrip(points=zone.corners(repeat_first=True), is_persistent=True) def on_release(key): if key == keyboard.Key.esc: return False # stop the listener # collect events until released with keyboard.Listener(on_press=on_press, on_release=on_release) as listener: ff.log("Press [esc] to quit") listener.join() if args.clear: client.simFlushPersistentMarkers()