コード例 #1
0
 def dump_subvol(self,picking_result):
     from aitom.classify.deep.unsupervised.autoencoder.autoencoder_util import peaks_to_subvolumes
     subvols_loc = os.path.join(self.dump_path,"demo_single_particle_subvolumes.pickle")
     a = io_file.read_mrc_data(self.path)
     d = peaks_to_subvolumes(im_vol_util.cub_img(a)['vt'], picking_result, 32)
     io_file.pickle_dump(d, subvols_loc)
     print("Save subvolumes .pickle file to:", subvols_loc)
コード例 #2
0
def particle_picking(mrc_header):

    sigma1 = max(int(7 / voxel_spacing_in_nm),
                 2)  # In general, 7 is optimal sigma1 val in nm according to the paper and sigma1 should at least be 2
    print('sigma1=%d' % sigma1)
    # For particular tomogram, larger sigma1 value may have better results. Use IMOD to display selected peaks and determine best sigma1.
    # For 'aitom_demo_cellular_tomogram.mrc', sigma1 is 5 rather than 3 for better performance(in this tomogram, 7nm corresponds to 3.84 pixels)
    # print(mrc_header['MRC']['xlen'], mrc_header['MRC']['nx'], voxel_spacing_in_nm, sigma1)

    partition_op = {'nonoverlap_width': sigma1 * 20, 'overlap_width': sigma1 * 10, 'save_vg': False}
    result = picking(path, s1=sigma1, s2=sigma1 * 1.1, t=3, find_maxima=False, partition_op=partition_op,
                     multiprocessing_process_num=10, pick_num=1000)
    print("DoG done, %d particles picked" % len(result))
    pprint(result[:5])

    # (Optional) Save subvolumes of peaks for autoencoder input
    dump_subvols = True
    if dump_subvols:  # use later for autoencoder
        subvols_loc = "demo_single_particle_subvolumes.pickle"
        from aitom.classify.deep.unsupervised.autoencoder.autoencoder_util import peaks_to_subvolumes

        a = io_file.read_mrc_data(path)
        d = peaks_to_subvolumes(im_vol_util.cub_img(a)['vt'], result, 32)
        io_file.pickle_dump(d, subvols_loc)
        print("Save subvolumes .pickle file to:", subvols_loc)
コード例 #3
0
def main():
    # Download from: https://cmu.box.com/s/9hn3qqtqmivauus3kgtasg5uzlj53wxp
    path = '/ldap_shared/home/v_zhenxi_zhu/data/aitom_demo_single_particle_tomogram.mrc'

    # Also, we can crop and only use part of the mrc image instead of binning for tasks requiring higher resolution
    # crop_path = 'cropped.mrc'
    # crop_mrc(path, crop_path)

    mrc_header = io_file.read_mrc_header(path)
    voxel_spacing_in_nm = mrc_header['MRC']['xlen'] / mrc_header['MRC'][
        'nx'] / 10
    sigma1 = max(
        int(7 / voxel_spacing_in_nm), 2
    )  # In general, 7 is optimal sigma1 val in nm according to the paper and sigma1 should at least be 2
    print('sigma1=%d' % sigma1)
    # For particular tomogram, larger sigma1 value may have better results. Use IMOD to display selected peaks and determine best sigma1.
    # For 'aitom_demo_cellular_tomogram.mrc', sigma1 is 5 rather than 3 for better performance(in this tomogram, 7nm corresponds to 3.84 pixels)
    # print(mrc_header['MRC']['xlen'], mrc_header['MRC']['nx'], voxel_spacing_in_nm, sigma1)

    partition_op = {
        'nonoverlap_width': sigma1 * 20,
        'overlap_width': sigma1 * 10,
        'save_vg': False
    }
    result = picking(path,
                     s1=sigma1,
                     s2=sigma1 * 1.1,
                     t=3,
                     find_maxima=False,
                     partition_op=partition_op,
                     multiprocessing_process_num=10,
                     pick_num=1000)
    print("DoG done, %d particles picked" % len(result))
    pprint(result[:5])

    # (Optional) Save subvolumes of peaks for autoencoder input
    dump_subvols = True
    if dump_subvols:  # use later for autoencoder
        subvols_loc = "demo_single_particle_subvolumes.pickle"
        from aitom.classify.deep.unsupervised.autoencoder.autoencoder_util import peaks_to_subvolumes
        a = io_file.read_mrc_data(path)
        d = peaks_to_subvolumes(im_vol_util.cub_img(a)['vt'], result, 32)
        io_file.pickle_dump(d, subvols_loc)
        print("Save subvolumes .pickle file to:", subvols_loc)

    # Display selected peaks using imod/3dmod (http://bio3d.colorado.edu/imod/)
    '''
    #Optional: smooth original image
    a = io_file.read_mrc_data(path) 
    path =path[:-5]+'_smoothed'+path[-4:]
    temp = im_vol_util.cub_img(a)
    s1 = sigma1
    s2=sigma1*1.1
    vg = dog_smooth(temp['vt'], s1,s2)
    #vg = smooth(temp['vt'], s1)
    TIM.write_data(vg,path)
    '''
    json_data = []  # generate file for 3dmod
    for i in range(len(result)):
        loc_np = result[i]['x']
        loc = []
        for j in range(len(loc_np)):
            loc.append(loc_np[j].tolist())
        json_data.append({'peak': {'loc': loc}})
    with open('data_json_file.json', 'w') as f:
        json.dump(json_data, f)

    dj = json_data
    x = N.zeros((len(dj), 3))
    for i, d in enumerate(dj):
        x[i, :] = N.array(d['peak']['loc'])

    l = generate_lines(x_full=x, rad=sigma1)
    display_map_with_lines(l=l, map_file=path)