def average(dj, mask_count_threshold): vol_sum = None mask_sum = None for d in dj: v = IF.read_mrc_vol(d['subtomogram']) if (not N.all(N.isfinite(v))): raise Exception('error loading', d['subtomogram']) vm = IF.read_mrc_vol(d['mask']) v_r = GR.rotate_pad_mean(v, angle=d['angle'], loc_r=d['loc']) assert N.all(N.isfinite(v_r)) vm_r = GR.rotate_mask(vm, angle=d['angle']) assert N.all(N.isfinite(vm_r)) if (vol_sum is None): vol_sum = N.zeros(v_r.shape, dtype=N.float64, order='F') vol_sum += v_r if (mask_sum is None): mask_sum = N.zeros(vm_r.shape, dtype=N.float64, order='F') mask_sum += vm_r ind = (mask_sum >= mask_count_threshold) vol_sum_fft = NF.fftshift(NF.fftn(vol_sum)) avg = N.zeros(vol_sum_fft.shape, dtype=N.complex) avg[ind] = (vol_sum_fft[ind] / mask_sum[ind]) avg = N.real(NF.ifftn(NF.ifftshift(avg))) return { 'v': avg, 'm': (mask_sum / len(dj)), }
def ssnr_sequential___individual_data_collect(self, r, op): if (self is None): get_mrc_func = IV.get_mrc else: get_mrc_func = self.cache.get_mrc v = get_mrc_func(r['subtomogram']) if ('angle' in r): v = GR.rotate_pad_mean(v, angle=N.array(r['angle'], dtype=N.float), loc_r=N.array(r['loc'], dtype=N.float)) if ((op is not None) and ('segmentation_tg' in op) and ('template' in r) and ('segmentation' in r['template'])): phi = IV.read_mrc_vol(r['template']['segmentation']) phi_m = (phi > 0.5) del phi (ang_inv, loc_inv) = AAL.reverse_transform_ang_loc(r['angle'], r['loc']) phi_mr = GR.rotate(phi_m, angle=ang_inv, loc_r=loc_inv, default_val=0) del phi_m del ang_inv, loc_inv import aitom.tomominer.pursuit.multi.util as PMU v_s = PMU.template_guided_segmentation(v=v, m=phi_mr, op=op['segmentation_tg']) del phi_mr if (v_s is not None): v_f = N.isfinite(v_s) if (v_f.sum() > 0): v_s[N.logical_not(v_f)] = v_s[v_f].mean() v = v_s del v_s v = NF.fftshift(NF.fftn(v)) m = get_mrc_func(r['mask']) if ('angle' in r): m = GR.rotate_mask(m, angle=N.array(r['angle'], dtype=N.float)) v[(m < op['mask_cutoff'])] = 0.0 return {'v': v, 'm': m, }
def var__local(self, data_json, labels=None, mask_cutoff=0.5, return_key=True, segmentation_tg_op=None): if labels is None: labels = ([0] * len(data_json)) sum_v = {} prod_sum_v = {} mask_sum = {} for (i, r) in enumerate(data_json): if (self is not None) and (self.work_queue is not None) and self.work_queue.done_tasks_contains( self.task.task_id): raise Exception('Duplicated task') v = IV.read_mrc_vol(r['subtomogram']) v = GR.rotate_pad_mean(v, angle=N.array(r['angle'], dtype=N.float), loc_r=N.array(r['loc'], dtype=N.float)) m = IV.read_mrc_vol(r['mask']) m = GR.rotate_mask(m, N.array(r['angle'], dtype=N.float)) if (segmentation_tg_op is not None) and ('template' in r) and ('segmentation' in r['template']): phi = IV.read_mrc(r['template']['segmentation'])['value'] import aitom.tomominer.pursuit.multi.util as PMU v_s = PMU.template_guided_segmentation(v=v, m=(phi > 0.5), op=segmentation_tg_op) if v_s is not None: v = v_s del v_s v_t = N.zeros(v.shape) v_f = N.isfinite(v) v_t[v_f] = v[v_f] v_t[N.logical_not(v_f)] = v[v_f].mean() v = v_t del v_f, v_t v = NF.fftshift(NF.fftn(v)) v[(m < mask_cutoff)] = 0.0 if labels[i] not in sum_v: sum_v[labels[i]] = v else: sum_v[labels[i]] += v if labels[i] not in prod_sum_v: prod_sum_v[labels[i]] = (v * N.conj(v)) else: prod_sum_v[labels[i]] += (v * N.conj(v)) if labels[i] not in mask_sum: mask_sum[labels[i]] = N.zeros(m.shape, dtype=N.int) mask_sum[labels[i]][(m >= mask_cutoff)] += 1 re = {'sum': sum_v, 'prod_sum': prod_sum_v, 'mask_sum': mask_sum, } if return_key: re_key = self.cache.save_tmp_data(re, fn_id=self.task.task_id) assert (re_key is not None) return {'key': re_key, } else: return re
def process(op): with open(op['input data json file']) as f: dj = json.load(f) if 'test' in op: if ('sample_num' in op['test']) and (op['test']['sample_num'] > 0) and (len(dj) > op['test']['sample_num']): print(('testing the procedure using a subsample of %d subtomograms' % op['test']['sample_num'])) dj = random.sample(dj, op['test']['sample_num']) mat = None for (i, d) in enumerate(dj): print('\rloading', i, ' ', end=' ') sys.stdout.flush() v = IF.read_mrc_vol(d['subtomogram']) if op['mode'] == 'pose': vr = GR.rotate_pad_mean(v, rm=N.array(d['pose']['rm']), c1=N.array(d['pose']['c'])) elif op['mode'] == 'template': vr = GR.rotate_pad_mean(v, angle=N.array(d['angle']), loc_r=N.array(d['loc'])) else: raise Exception('op[mode]') if mat is None: mat = N.zeros((len(dj), vr.size)) mat[i, :] = vr.flatten() if 'PCA' in op: import aitom.tomominer.dimension_reduction.empca as drempca pca = drempca.empca(data=mat, weights=N.ones(mat.shape), nvec=op['PCA']['n_dims'], niter=op['PCA']['n_iter']) mat_km = pca.coeff else: mat_km = mat km = SC.KMeans(n_clusters=op['kmeans']['cluster num'], n_init=op['kmeans']['n_init'], n_jobs=(op['kmeans']['n_jobs'] if ('n_jobs' in op['kmeans']) else (-1)), verbose=op['kmeans']['verbose']) lbl = km.fit_predict(mat_km) dj_new = [] for (i, d) in enumerate(dj): dn = {} if 'id' in d: dn['id'] = d['id'] dn['subtomogram'] = d['subtomogram'] dn['cluster_label'] = int(lbl[i]) dj_new.append(dn) op['output data json file'] = os.path.abspath(op['output data json file']) if not os.path.isdir(os.path.dirname(op['output data json file'])): os.makedirs(os.path.dirname(op['output data json file'])) with open(op['output data json file'], 'w') as f: json.dump(dj_new, f, indent=2) clus_dir = os.path.join(op['out dir'], 'vol-avg') if not os.path.isdir(clus_dir): os.makedirs(clus_dir) clus_stat = [] for l in set(lbl.tolist()): avg_file_name = os.path.abspath(os.path.join(clus_dir, ('%03d.mrc' % (l,)))) v_avg = mat[(lbl == l), :].sum(axis=0).reshape(v.shape) IF.put_mrc(mrc=v_avg, path=avg_file_name, overwrite=True) clus_stat.append( {'cluster_label': l, 'size': len([_ for _ in lbl if (_ == l)]), 'subtomogram': avg_file_name, }) op['output cluster stat file'] = os.path.abspath(op['output cluster stat file']) if not os.path.isdir(os.path.dirname(op['output cluster stat file'])): os.makedirs(os.path.dirname(op['output cluster stat file'])) with open(op['output cluster stat file'], 'w') as f: json.dump(clus_stat, f, indent=2)