コード例 #1
0
def start_self_driving():
    global on
    model = inference.ModelDescriptor(
        name='mobilenet_160',
        input_shape=(1, 160, 160, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(MODEL_NAME))
    with PiCamera(sensor_mode=4, resolution=(160, 160),
                  framerate=30) as camera:
        camera_thread = threading.Thread(target=capture, args=(camera, ))
        camera_thread.daemon = True
        camera_thread.start()

        with inference.CameraInference(model) as inf:
            print('Model is ready. Type on/off to start/stop self-driving')
            sys.stdout.flush()

            on_off_thread = threading.Thread(target=on_off, args=())
            on_off_thread.daemon = True
            on_off_thread.start()
            for result in inf.run():
                if on:
                    direction, probability = process(result)
                    print('prediction: {:.2f} {} {:.2f}'.format(
                        time.time(), direction, probability))
                    sys.stdout.flush()
コード例 #2
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--input_layer',
                        default='map/TensorArrayStack/TensorArrayGatherV3',
                        help='Name of input layer.')
    parser.add_argument('--output_layer',
                        default="prediction",
                        help='Name of output layer.')
    parser.add_argument(
        '--num_frames',
        type=int,
        default=-1,
        help='Sets the number of frames to run for, otherwise runs forever.')

    parser.add_argument('--input_mean',
                        type=float,
                        default=128.0,
                        help='Input mean.')
    parser.add_argument('--input_std',
                        type=float,
                        default=128.0,
                        help='Input std.')
    parser.add_argument(
        '--threshold',
        type=float,
        default=0.1,
        help='Threshold for classification score (from output tensor).')
    parser.add_argument('--top_k',
                        type=int,
                        default=3,
                        help='Keep at most top_k labels.')
    parser.add_argument('--detecting_list',
                        type=list,
                        default=[
                            'Biston betularia (Peppered Moth)',
                            'Spodoptera litura (Oriental Leafworm Moth)'
                        ],
                        help='Input a list of bugs that you want to keep.')
    parser.add_argument('--message_threshold',
                        type=int,
                        default=1,
                        help='Input detection threshold for sending sms')
    args = parser.parse_args()
    model = inference.ModelDescriptor(
        name='mobilenet_based_classifier',
        input_shape=(1, 192, 192, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(
            'mobilenet_v2_192res_1.0_inat_insect.binaryproto'))
    labels = read_labels(
        "/home/pi/models/mobilenet_v2_192res_1.0_inat_insect_labels.txt")
    detector = FawDetector()
    detector.run(args.input_layer, args.output_layer, args.num_frames,
                 args.input_mean, args.input_std, args.threshold, args.top_k,
                 args.detecting_list, args.message_threshold, model, labels)
コード例 #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', required=True,
        help='Path to converted model file that can run on VisionKit.')
    parser.add_argument('--label_path', required=True,
        help='Path to label file that corresponds to the model.')
    parser.add_argument('--input_height', type=int, required=True, help='Input height.')
    parser.add_argument('--input_width', type=int, required=True, help='Input width.')
    parser.add_argument('--input_layer', required=True, help='Name of input layer.')
    parser.add_argument('--output_layer', required=True, help='Name of output layer.')
    parser.add_argument('--num_frames', type=int, default=None,
        help='Sets the number of frames to run for, otherwise runs forever.')
    parser.add_argument('--input_mean', type=float, default=128.0, help='Input mean.')
    parser.add_argument('--input_std', type=float, default=128.0, help='Input std.')
    parser.add_argument('--input_depth', type=int, default=3, help='Input depth.')
    parser.add_argument('--threshold', type=float, default=0.1,
        help='Threshold for classification score (from output tensor).')
    parser.add_argument('--top_k', type=int, default=3, help='Keep at most top_k labels.')
    parser.add_argument('--preview', action='store_true', default=False,
        help='Enables camera preview in addition to printing result to terminal.')
    parser.add_argument('--show_fps', action='store_true', default=False,
        help='Shows end to end FPS.')
    args = parser.parse_args()

    model = inference.ModelDescriptor(
        name='mobilenet_based_classifier',
        input_shape=(1, args.input_height, args.input_width, args.input_depth),
        input_normalizer=(args.input_mean, args.input_std),
        compute_graph=utils.load_compute_graph(args.model_path))
    labels = read_labels(args.label_path)

    with PiCamera(sensor_mode=4, resolution=(1640, 1232), framerate=30) as camera:
        if args.preview:
            camera.start_preview()

        with inference.CameraInference(model) as camera_inference:
            for result in camera_inference.run(args.num_frames):
                processed_result = process(result, labels, args.output_layer,
                                           args.threshold, args.top_k)
                send_signal_to_servos(processed_result[0])
                message = get_message(processed_result, args.threshold, args.top_k)
                if args.show_fps:
                    message += '\nWith %.1f FPS.' % camera_inference.rate
                print(message)

                if args.preview:
                    camera.annotate_foreground = Color('black')
                    camera.annotate_background = Color('white')
                    # PiCamera text annotation only supports ascii.
                    camera.annotate_text = '\n %s' % message.encode(
                        'ascii', 'backslashreplace').decode('ascii')

        if args.preview:
            camera.stop_preview()
コード例 #4
0
def start_self_driving():
    model = inference.ModelDescriptor(
        name='mobilenet_160',
        input_shape=(1, 160, 160, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(MODEL_NAME))
    print('Model loaded')
    with PiCamera(sensor_mode=4, resolution=(160, 160), framerate=30) as camera:
        print('Connected to the Pi Camera')
        with inference.CameraInference(model) as inf:
            for result in inf.run():
                direction, probability = process(result)
                RCool_drive.drive(direction)

                print('{:.2f} {} {:.2f}'.format(time.time(), direction, probability))
コード例 #5
0
ファイル: RCool_ml.py プロジェクト: thatsmesasha/rcool
def main():
    model = inference.ModelDescriptor(
        name='mobilenet_160',
        input_shape=(1, 160, 160, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph('dumb.binaryproto'))
    with inference.ImageInference(model) as inf:
        print('Waiting for input...')
        sys.stdout.flush()
        for _ in sys.stdin:
            now = time.time()
            img = Image.open('{}/current.jpg'.format(os.getcwd()))
            result = inf.run(img)
            label, probability = process(result)
            print('prediction: {} {} {}'.format(now, label, probability))
            sys.stdout.flush()
コード例 #6
0
ファイル: model.py プロジェクト: thatsmesasha/driverless
    def initialize(self):
        if Model.car is None:
            car = Car()
            if Car.connected:
                Model.car = car
                self.log('INFO', 'Car for self-driving is connected')
            else:
                self.log('ERROR', 'Car is not connected for self-driving')
                return False

        if Model.model is None:
            try:
                from aiy.vision import inference
                from aiy.vision.models import utils

                Model.model = inference.ModelDescriptor(
                    name='mobilenet_160',
                    input_shape=(1, 160, 160, 3),
                    input_normalizer=(128.0, 128.0),
                    compute_graph=utils.load_compute_graph(MODEL_NAME))
                self.log('INFO', 'Self-driving model is loaded')
            except Exception as e:
                self.log(
                    'ERROR',
                    'Self-driving model cannot be loaded: {}'.format(str(e)))
                return False

        if Model.inference_engine is None:
            try:
                from aiy.vision import inference
                Model.inference_engine = inference.InferenceEngine()
                try:
                    Model.inference_engine.unload_model('mobilenet_160')
                except:
                    pass
                Model.model_name = Model.inference_engine.load_model(
                    Model.model)
                Model.good = True
                self.log('INFO', 'Image inference has started')
            except Exception as e:
                self.log(
                    'ERROR',
                    'Image inference cannot be started: {}'.format(str(e)))
                return False

        return True
コード例 #7
0
def main():
    # Loading the model and label
    model = inference.ModelDescriptor(
        name='mobilenet_based_classifier',
        input_shape=(1, 160, 160, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph('CrackClassification_graph.binaryproto'))
    print("Model loaded.")

    labels = read_labels(label_path + 'crack_label.txt')
    print("Labels loaded")
    
    # Classifier parameters
    top_k = 3
    threshold = 0.4
    num_frame = None
    show_fps = False
    
    # LED setup
    ledRED = LED(PIN_B)
    ledGREEN = LED(PIN_A)
    ledRED.off()
    ledGREEN.on()

    with PiCamera(sensor_mode=4, resolution=(1640, 1232), framerate=30) as camera:
        with inference.CameraInference(model) as camera_inference:
            for result in camera_inference.run(num_frame):
                processed_result = process(result, labels, 'final_result',threshold, top_k)
                    
                if processed_result[0][0] == 'positive':
                    print("CRACK")
                    ledGREEN.off()
                    ledRED.on()
                else:
                    print("CLEAR")
                    ledRED.off()
                    ledGREEN.on()
                
                print("Camera inference rate: " + str(camera_inference.rate))
コード例 #8
0
    with open(filename) as fp:
        fp = open(filename)
        tmp_shutter_numb = fp.readlines()
        tmp_shutter_numb = tmp_shutter_numb[0].rstrip()
        shutter_numb = int(tmp_shutter_numb)


def read_labels(label_path):
    with open(label_path) as label_file:
        return [label.strip() for label in label_file.readlines()]


model = inference.ModelDescriptor(
    name='mobilenet_based_classifier',
    input_shape=(1, args.input_height, args.input_width, args.input_depth),
    input_normalizer=(args.input_mean, args.input_std),
    compute_graph=utils.load_compute_graph(args.model_path))
labels = read_labels(args.label_path)


def get_message(result, threshold, top_k):
    if result:
        return '%s' % '\n'.join(result)
    else:
        return 'Nothing detected when threshold=%.2f, top_k=%d' % (threshold,
                                                                   top_k)


def process(result, labels, tensor_name, threshold, top_k):
    """Processes inference result and returns labels sorted by confidence."""
コード例 #9
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--dog_park_model_path',
                        help='Path to the model file for the dog park.')
    parser.add_argument('--vb1_model_path',
                        help='Path to the model file for volley ball court 1.')
    parser.add_argument('--vb2_model_path',
                        help='Path to the model file for volley ball court 1.')
    parser.add_argument(
        '--label_path',
        required=True,
        help='Path to label file that corresponds to the model.')
    parser.add_argument('--input_mean',
                        type=float,
                        default=128.0,
                        help='Input mean.')
    parser.add_argument('--input_std',
                        type=float,
                        default=128.0,
                        help='Input std.')
    parser.add_argument('--input_depth',
                        type=int,
                        default=3,
                        help='Input depth.')
    parser.add_argument('--enable_streaming',
                        default=False,
                        action='store_true',
                        help='Enable streaming server')
    parser.add_argument('--streaming_bitrate',
                        type=int,
                        default=1000000,
                        help='Streaming server video bitrate (kbps)')
    parser.add_argument('--mdns_name',
                        default='',
                        help='Streaming server mDNS name')
    parser.add_argument(
        '--preview',
        action='store_true',
        default=False,
        help=
        'Enables camera preview in addition to printing result to terminal.')
    parser.add_argument(
        '--time_interval',
        type=int,
        default=10,
        help='Time interval at which to store data in seconds.')
    parser.add_argument(
        '--gather_data',
        action='store_true',
        default=False,
        help='Also save images according to the assigned category.')
    parser.add_argument(
        '--timelapse',
        action='store_true',
        default=False,
        help='Also save some timelapses of the entire scene, every 120 seconds.'
    )
    parser.add_argument('--image_folder',
                        default='/home/pi/Pictures/Data',
                        help='Folder to save captured images')
    args = parser.parse_args()

    labels = read_labels(args.label_path)

    # At least one model needs to be passed in.
    assert args.dog_park_model_path or args.vb1_model_path or args.vb2_model_path

    # Check that the folder exists
    if args.gather_data:
        expected_subfolders = ['dog_park', 'court_one', 'court_two']
        subfolders = os.listdir(args.image_folder)
        for folder in expected_subfolders:
            assert folder in subfolders

    with ExitStack() as stack:

        dog_park = {
            'location_name': 'dog_park',
            'path': args.dog_park_model_path,
        } if args.dog_park_model_path else None
        vb1 = {
            'location_name': 'court_one',
            'path': args.vb1_model_path,
        } if args.vb1_model_path else None
        vb2 = {
            'location_name': 'court_two',
            'path': args.vb2_model_path,
        } if args.vb2_model_path else None

        # Get the list of models, filter to only the ones that were passed in.
        models = [dog_park, vb1, vb2]
        models = list(filter(lambda model: model, models))

        # Initialize models and add them to the context
        for model in models:
            print('Initializing {model_name}...'.format(
                model_name=model["location_name"]))
            descriptor = inference.ModelDescriptor(
                name='mobilenet_based_classifier',
                input_shape=(1, 160, 160, args.input_depth),
                input_normalizer=(args.input_mean, args.input_std),
                compute_graph=utils.load_compute_graph(model['path']))

            model['descriptor'] = descriptor

        if dog_park:
            dog_park['image_inference'] = stack.enter_context(
                inference.ImageInference(dog_park['descriptor']))
        if vb1:
            vb1['image_inference'] = stack.enter_context(
                inference.ImageInference(vb1['descriptor']))
        if vb2:
            vb2['image_inference'] = stack.enter_context(
                inference.ImageInference(vb2['descriptor']))

        camera = stack.enter_context(
            PiCamera(sensor_mode=4, resolution=(820, 616), framerate=30))

        server = None
        if args.enable_streaming:
            server = stack.enter_context(
                StreamingServer(camera,
                                bitrate=args.streaming_bitrate,
                                mdns_name=args.mdns_name))

        if args.preview:
            # Draw bounding boxes around locations
            # Load the arbitrarily sized image
            img = Image.new('RGB', (820, 616))
            draw = ImageDraw.Draw(img)

            for location in LOCATIONS.values():
                x1, y1, x2, y2 = location
                draw_rectangle(draw, x1, y1, x2, y2, 3, outline='white')

            # Create an image padded to the required size with
            # mode 'RGB'
            pad = Image.new('RGB', (
                ((img.size[0] + 31) // 32) * 32,
                ((img.size[1] + 15) // 16) * 16,
            ))
            # Paste the original image into the padded one
            pad.paste(img, (0, 0))

            # Add the overlay with the padded image as the source,
            # but the original image's dimensions
            camera.add_overlay(pad.tobytes(), alpha=64, layer=3, size=img.size)

            camera.start_preview()

        data_filename = _make_filename(args.image_folder, 'data', None, 'json')
        data_generator = commit_data_to_long_term(args.time_interval,
                                                  data_filename)
        data_generator.send(None)

        # Capture one picture of entire scene each time it's started again.
        time.sleep(2)
        date = time.strftime('%Y-%m-%d')
        scene_filename = _make_filename(args.image_folder, date, None)
        camera.capture(scene_filename)

        # Draw bounding box on image showing the crop locations
        with Image.open(scene_filename) as scene:
            draw = ImageDraw.Draw(scene)

            for location in LOCATIONS.values():
                x1, y1, x2, y2 = location
                draw_rectangle(draw, x1, y1, x2, y2, 3, outline='white')

            scene.save(scene_filename)

        # Constantly get cropped images
        for cropped_images in get_cropped_images(camera, args.timelapse):

            svg_doc = None
            if args.enable_streaming:
                width = 820 * SVG_SCALE_FACTOR
                height = 616 * SVG_SCALE_FACTOR
                svg_doc = svg.Svg(width=width, height=height)

                for location in LOCATIONS.values():
                    x, y, x2, y2 = location
                    w = (x2 - x) * SVG_SCALE_FACTOR
                    h = (y2 - y) * SVG_SCALE_FACTOR
                    x = x * SVG_SCALE_FACTOR
                    y = y * SVG_SCALE_FACTOR
                    svg_doc.add(
                        svg.Rect(
                            x=int(x),
                            y=int(y),
                            width=int(w),
                            height=int(h),
                            rx=10,
                            ry=10,
                            fill_opacity=0.3,
                            style='fill:none;stroke:white;stroke-width:4px'))

            # For each inference model, crop and process a different thing.
            for model in models:
                location_name = model['location_name']
                image_inference = model['image_inference']

                cropped_image = cropped_images[location_name]

                # TODO: (Image Comparison) If False,return no activity.
                if cropped_image:
                    # then run image_inference on them.
                    result = image_inference.run(cropped_image)
                    processed_result = process(result, labels, 'final_result')
                    data_generator.send(
                        (location_name, processed_result, svg_doc))
                    message = get_message(processed_result)

                    # Print the message
                    # print('\n')
                    # print('{location_name}:'.format(location_name=location_name))
                    # print(message)
                else:
                    # Fake processed_result
                    processed_result = [('inactive', 1.00), ('active', 0.00)]
                    data_generator.send(
                        (location_name, processed_result, svg_doc))

                label = processed_result[0][0]
                timestamp = time.strftime('%Y-%m-%d_%H.%M.%S')
                # print(timestamp)
                # print('\n')

                if args.gather_data and cropped_image:
                    # Gather 1% data on 'no activity' since it's biased against that.
                    # Gather 0.1% of all images.
                    if (
                            # (label == 'no activity' and random.random() > 0.99) or
                            # (random.random() > 0.999)
                            # (location_name != 'dog_park' and random.random() > 0.99) or
                        (random.random() > 0.9)):
                        subdir = '{location_name}/{label}'.format(
                            location_name=location_name, label=label)
                        filename = _make_filename(args.image_folder, timestamp,
                                                  subdir)
                        cropped_image.save(filename)

                # if svg_doc:
                #     ## Plot points out
                #     ## 160 x 80 grid
                #     ## 16px width
                #     ## 20, 40, 60 for 0, 1, 2
                #     lines = message.split('\n')
                #     y_correction = len(lines) * 20
                #     for line in lines:
                #         svg_doc.add(svg.Text(line,
                #         x=(LOCATIONS[location_name][0]) * SVG_SCALE_FACTOR,
                #         y=(LOCATIONS[location_name][1] - y_correction) * SVG_SCALE_FACTOR,
                #         fill='white', font_size=20))

                #         y_correction = y_correction - 20

                # TODO: Figure out how to annotate at specific locations.
                # if args.preview:
                #     camera.annotate_foreground = Color('black')
                #     camera.annotate_background = Color('white')
                #     # PiCamera text annotation only supports ascii.
                #     camera.annotate_text = '\n %s' % message.encode(
                #         'ascii', 'backslashreplace').decode('ascii')

            if server:
                server.send_overlay(str(svg_doc))

        if args.preview:
            camera.stop_preview()
コード例 #10
0
ファイル: deepjanken.py プロジェクト: karaage0703/deepjanken
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model_path',
        required=True,
        help='Path to converted model file that can run on VisionKit.')
    parser.add_argument(
        '--label_path',
        required=True,
        help='Path to label file that corresponds to the model.')
    parser.add_argument('--input_height',
                        type=int,
                        required=True,
                        help='Input height.')
    parser.add_argument('--input_width',
                        type=int,
                        required=True,
                        help='Input width.')
    parser.add_argument('--input_layer',
                        required=True,
                        help='Name of input layer.')
    parser.add_argument('--output_layer',
                        required=True,
                        help='Name of output layer.')
    parser.add_argument('--input_mean',
                        type=float,
                        default=128.0,
                        help='Input mean.')
    parser.add_argument('--input_std',
                        type=float,
                        default=128.0,
                        help='Input std.')
    parser.add_argument('--input_depth',
                        type=int,
                        default=3,
                        help='Input depth.')
    parser.add_argument(
        '--threshold',
        type=float,
        default=0.1,
        help='Threshold for classification score (from output tensor).')
    parser.add_argument('--top_k',
                        type=int,
                        default=1,
                        help='Keep at most top_k labels.')
    args = parser.parse_args()

    model = inference.ModelDescriptor(
        name='mobilenet_based_classifier',
        input_shape=(1, args.input_height, args.input_width, args.input_depth),
        input_normalizer=(args.input_mean, args.input_std),
        compute_graph=utils.load_compute_graph(args.model_path))
    labels = read_labels(args.label_path)

    print("Taking photo")
    with PiCamera() as camera:
        camera.resolution = (640, 480)
        camera.start_preview()
        sleep(3.000)
        camera.capture(photo_filename)

    with inference.ImageInference(model) as image_inference:
        image = Image.open(photo_filename)
        result = image_inference.run(image)
        processed_result = process(result, labels, args.output_layer,
                                   args.threshold, args.top_k)
        message = get_message(processed_result, args.threshold, args.top_k)

    return message
コード例 #11
0
ファイル: faw_detector.py プロジェクト: wuhland/faw
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--input_layer',
                        default='map/TensorArrayStack/TensorArrayGatherV3',
                        help='Name of input layer.')
    parser.add_argument('--output_layer',
                        default="prediction",
                        help='Name of output layer.')
    parser.add_argument(
        '--num_frames',
        type=int,
        default=-1,
        help='Sets the number of frames to run for, otherwise runs forever.')

    parser.add_argument('--input_mean',
                        type=float,
                        default=128.0,
                        help='Input mean.')
    parser.add_argument('--input_std',
                        type=float,
                        default=128.0,
                        help='Input std.')
    parser.add_argument(
        '--threshold',
        type=float,
        default=0.6,
        help='Threshold for classification score (from output tensor).')
    parser.add_argument('--top_k',
                        type=int,
                        default=3,
                        help='Keep at most top_k labels.')
    parser.add_argument(
        '--detecting_list',
        type=list,
        default=[
            'Biston betularia (Peppered Moth)',
            'Spodoptera litura (Oriental Leafworm Moth)',
            'Utetheisa ornatrix (Ornate Bella Moth)',
            'Polygrammate hebraeicum (Hebrew Moth)',
            'Palpita magniferalis (Splendid Palpita Moth) (0.14)',
            'Hyles lineata (White-lined Sphinx Moth)',
            'Hemileuca eglanterina (Western Sheep Moth)',
            'Ceratomia undulosa (Waved Sphinx Moth)',
            'Nadata gibbosa (White-dotted Prominent Moth)',
            'Lophocampa caryae (Hickory Tussock Moth)',
            'Spodoptera ornithogalli (Yellow-striped Armyworm Moth)',
            'Spodoptera litura (Oriental Leafworm Moth)',
            'Charadra deridens (Laugher Moth)'
        ],
        help='Input a list of bugs that you want to keep.')
    parser.add_argument('--message_threshold',
                        type=int,
                        default=4,
                        help='Input detection threshold for sending sms')
    args = parser.parse_args()
    model = inference.ModelDescriptor(
        name='mobilenet_based_classifier',
        input_shape=(1, 192, 192, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(
            'mobilenet_v2_192res_1.0_inat_insect.binaryproto'))
    labels = read_labels(
        "/home/pi/models/mobilenet_v2_192res_1.0_inat_insect_labels.txt")
    detector = FawDetector()

    detector.run(args.input_layer, args.output_layer, args.num_frames,
                 args.input_mean, args.input_std, args.threshold, args.top_k,
                 args.detecting_list, args.message_threshold, model, labels)