コード例 #1
0
def model():
    print(os.path.exists(_COMPUTE_GRAPH_NAME))
    return ModelDescriptor(
        name='FaceRecognition',
        input_shape=(1, 160, 160, 3),
        input_normalizer=(127.5, 128),
        compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME))
コード例 #2
0
def model_descriptor(graph_name):
    # Face detection model has special implementation in VisionBonnet firmware.
    # input_shape, input_normalizer, and compute_graph params have on effect.
    return ModelDescriptor(name='MODEL' + graph_name,
                           input_shape=(1, 0, 0, 3),
                           input_normalizer=(0, 0),
                           compute_graph=utils.load_compute_graph(graph_name))
コード例 #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        default='test_model',
                        help='Model identifier.')
    parser.add_argument('--model_path',
                        required=True,
                        help='Path to model file.')
    parser.add_argument('--test_file', default=None, help='Path to test file.')
    args = parser.parse_args()

    model = ModelDescriptor(name=args.model_name,
                            input_shape=(1, 192, 192, 3),
                            input_normalizer=(0, 1),
                            compute_graph=utils.load_compute_graph(
                                args.model_path))

    if args.test_file:
        with ImageInference(model) as inference:
            image = Image.open(args.test_file)
            result = inference.run(image)
            print(tensors_info(result.tensors))
        return

    with PiCamera(sensor_mode=4, framerate=30):
        with CameraInference(model) as inference:
            for result in inference.run():
                print('#%05d (%5.2f fps): %s' %
                      (inference.count, inference.rate,
                       tensors_info(result.tensors)))
コード例 #4
0
def model():
    # Face detection model has special implementation in VisionBonnet firmware.
    # input_shape, input_normalizer, and computate_graph params have on effect.
    return ModelDescriptor(
        name='FaceDetection',
        input_shape=(1, 0, 0, 3),
        input_normalizer=(0, 0),
        compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME))
コード例 #5
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model_path',
        required=True,
        help='Path to converted model file that can run on VisionKit.')
    parser.add_argument('--input_height',
                        type=int,
                        required=True,
                        help='Input height.')
    parser.add_argument('--input_width',
                        type=int,
                        required=True,
                        help='Input width.')
    parser.add_argument('--input_mean',
                        type=float,
                        default=128.0,
                        help='Input mean.')
    parser.add_argument('--input_std',
                        type=float,
                        default=128.0,
                        help='Input std.')
    parser.add_argument('--input_depth',
                        type=int,
                        default=3,
                        help='Input depth.')
    args = parser.parse_args()

    model = ModelDescriptor(
        name='test_run_model',
        input_shape=(1, args.input_height, args.input_width, args.input_depth),
        input_normalizer=(args.input_mean, args.input_std),
        compute_graph=utils.load_compute_graph(args.model_path))

    with PiCamera(sensor_mode=4, framerate=30) as camera:
        with CameraInference(model) as camera_inference:
            last_time = time.time()
            for i, result in enumerate(camera_inference.run()):
                output_tensor_str = [
                    '%s [%d elements]' % (k, len(v.data))
                    for k, v in result.tensors.items()
                ]

                cur_time = time.time()
                fps = 1.0 / (cur_time - last_time)
                last_time = cur_time

                print('%d-th inference, fps: %.1f FPS, %s' %
                      (i, fps, ','.join(output_tensor_str)))
コード例 #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        default='test_model',
                        help='Model identifier.')
    parser.add_argument('--model_path',
                        required=True,
                        help='Path to model file.')
    parser.add_argument('--speed',
                        default=0.5,
                        type=float,
                        help='Reduction factor on speed')
    args = parser.parse_args()

    model = ModelDescriptor(name=args.model_name,
                            input_shape=(1, 192, 192, 3),
                            input_normalizer=(0, 1),
                            compute_graph=utils.load_compute_graph(
                                args.model_path))

    left = Motor(PIN_A, PIN_B)
    right = Motor(PIN_C, PIN_D)
    print('spinning')

    try:
        with PiCamera(sensor_mode=4, framerate=30):
            with CameraInference(model) as inference:
                for result in inference.run():
                    data = [
                        tensor.data for _, tensor in result.tensors.items()
                    ]
                    lspeed, rspeed = data[0]
                    print('#%05d (%5.2f fps): %1.2f/%1.2f' %
                          (inference.count, inference.rate, lspeed, rspeed))
                    if lspeed < 0:
                        left.reverse(-max(-1, lspeed) * args.speed)
                    else:
                        left.forward(min(1, lspeed) * args.speed)
                    if rspeed < 0:
                        right.reverse(-max(-1, rspeed) * args.speed)
                    else:
                        right.forward(min(1, rspeed) * args.speed)

    except Exception as e:
        left.stop()
        right.stop()
        print(e)
コード例 #7
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name',
                        default='test_model',
                        help='Model identifier.')
    parser.add_argument('--model_path',
                        required=True,
                        help='Path to model file.')
    parser.add_argument('--input_height',
                        type=int,
                        required=True,
                        help='Input height.')
    parser.add_argument('--input_width',
                        type=int,
                        required=True,
                        help='Input width.')
    parser.add_argument('--input_depth',
                        type=int,
                        default=3,
                        help='Input depth.')
    parser.add_argument('--input_mean',
                        type=float,
                        default=128.0,
                        help='Input mean.')
    parser.add_argument('--input_std',
                        type=float,
                        default=128.0,
                        help='Input std.')
    args = parser.parse_args()

    model = ModelDescriptor(
        name=args.model_name,
        input_shape=(1, args.input_height, args.input_width, args.input_depth),
        input_normalizer=(args.input_mean, args.input_std),
        compute_graph=utils.load_compute_graph(args.model_path))

    with PiCamera(sensor_mode=4, framerate=30):
        with CameraInference(model) as inference:
            for result in inference.run():
                print('#%05d (%5.2f fps): %s' %
                      (inference.count, inference.rate,
                       tensors_info(result.tensors)))
コード例 #8
0
def model():
    return ModelDescriptor(
        name='object_detection',
        input_shape=(1, 256, 256, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME))
コード例 #9
0
def model(model_type):
    this_model = _MODELS[model_type]
    return ModelDescriptor(name=model_type,
                           input_shape=this_model.input_shape,
                           input_normalizer=this_model.input_normalizer,
                           compute_graph=this_model.compute_graph())
コード例 #10
0
def model():
    return ModelDescriptor(
        name='DishDetection',
        input_shape=(1, 0, 0, 3),
        input_normalizer=(0, 0),
        compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME))
    # for details about the parameters:
    frameWidth = 256
    frameHeight = 256
    frameRate = 20
    contrast = 40
    rotation = 180

    # Set the picamera parametertaob
    camera = picamera.PiCamera()
    camera.resolution = (frameWidth, frameHeight)
    camera.framerate = frameRate
    camera.contrast = contrast

    model = ModelDescriptor(name="DarthVaderDetector",
                            input_shape=(1, 256, 256, 3),
                            input_normalizer=(128.0, 128.0),
                            compute_graph=utils.load_compute_graph(
                                os.path.join(os.getcwd(),
                                             "darthvader.binaryproto")))

    # Start the video process
    with ImgCap(model, frameWidth, frameHeight, DEBUG) as img:
        camera.start_recording(img, format='rgb', splitter_port=1)
        try:
            while True:
                camera.wait_recording(
                    timeout=0
                )  # using timeout=0, default, it'll return immediately
                # if img.output is not None:
                # print(img.output[0,0,0])

        except KeyboardInterrupt:
コード例 #12
0
def model(model_type=MOBILENET):
    return ModelDescriptor(name=model_type,
                           input_shape=(1, 160, 160, 3),
                           input_normalizer=(128.0, 128.0),
                           compute_graph=utils.load_compute_graph(
                               _COMPUTE_GRAPH_NAME_MAP[model_type]))
コード例 #13
0
def model_roll():
    return ModelDescriptor(name='roll_inference',input_shape=(1, 64, 64, 3),input_normalizer=(128, 128),compute_graph=utils.load_compute_graph(_ROLL_GRAPH_NAME))
コード例 #14
0
def model():
    return ModelDescriptor(
        name='dish_classifier',
        input_shape=(1, 192, 192, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME))
コード例 #15
0
    parser.add_argument('--input_mean',
                        type=float,
                        default=128.0,
                        help='Input mean.')
    parser.add_argument('--input_std',
                        type=float,
                        default=128.0,
                        help='Input std.')
    parser.add_argument('--debug', default=False, action='store_true')
    args = parser.parse_args()

    DEBUG = args.debug

    model = ModelDescriptor(
        name=args.model_name,
        input_shape=(1, args.input_height, args.input_width, args.input_depth),
        input_normalizer=(args.input_mean, args.input_std),
        compute_graph=utils.load_compute_graph(args.model_path))

    # Start the video process
    with ImgCap(model, frameWidth, frameHeight, DEBUG) as img:
        camera.start_recording(img, format='rgb', splitter_port=1)
        try:
            while True:
                camera.wait_recording(
                    timeout=0
                )  # using timeout=0, default, it'll return immediately
                # if img.output is not None:
                # print(img.output[0,0,0])

        except KeyboardInterrupt:
コード例 #16
0
def model():
    return ModelDescriptor(
        name='cifar10_classification',
        input_shape=(1, 32, 32, 3),
        input_normalizer=(127.5, 127.5),
        compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME))
コード例 #17
0
ファイル: vision.py プロジェクト: nikhil-jt/edgetesting
parser.add_argument('--label_path', required=True, help='Path to label file.')
parser.add_argument('--model_path', required=True, help='Path to model file.')
parser.add_argument('--input', required=True, help='Input height.')
parser.add_argument('--input_size',
                    type=int,
                    required=True,
                    help='Input height.')
parser.add_argument('--output_key', required=True)
args = parser.parse_args()

image = Image.open(args.input)
width, height = image.size

model = ModelDescriptor(name=args.model_name,
                        input_shape=(1, args.input_size, args.input_size, 3),
                        input_normalizer=(128, 128),
                        compute_graph=utils.load_compute_graph(
                            args.model_path))

inference = ImageInference(model)
if inference:
    starttime = datetime.now()
    result = inference.run(image)
    deltatime = datetime.now() - starttime
    print(
        str(deltatime.seconds) + "s " + str(deltatime.microseconds / 1000) +
        "ms")

    assert len(result.tensors) == 1
    tensor = result.tensors[args.output_key]
コード例 #18
0
def model():
    return ModelDescriptor(
        name='image_classification',
        input_shape=(1, 160, 160, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(_COMPUTE_GRAPH_NAME))
コード例 #19
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model_path',
        required=True,
        help='Path to converted model file that can run on VisionKit.')
    parser.add_argument(
        '--label_path',
        required=True,
        help='Path to label file that corresponds to the model.')
    parser.add_argument(
        '--input_height', type=int, required=True, help='Input height.')
    parser.add_argument(
        '--input_width', type=int, required=True, help='Input width.')
    parser.add_argument(
        '--input_layer', required=True, help='Name of input layer.')
    parser.add_argument(
        '--output_layer', required=True, help='Name of output layer.')
    parser.add_argument(
        '--num_frames',
        type=int,
        default=-1,
        help='Sets the number of frames to run for, otherwise runs forever.')
    parser.add_argument(
        '--input_mean', type=float, default=128.0, help='Input mean.')
    parser.add_argument(
        '--input_std', type=float, default=128.0, help='Input std.')
    parser.add_argument(
        '--input_depth', type=int, default=3, help='Input depth.')
    parser.add_argument(
        '--threshold', type=float, default=0.6,
        help='Threshold for classification score (from output tensor).')
    parser.add_argument(
        '--preview',
        action='store_true',
        default=False,
        help='Enables camera preview in addition to printing result to terminal.')
    parser.add_argument(
        '--gpio_logic',
        default='NORMAL',
        help='Indicates if NORMAL or INVERSE logic is used in GPIO pins.')
    parser.add_argument(
        '--show_fps',
        action='store_true',
        default=False,
        help='Shows end to end FPS.')
    args = parser.parse_args()


    # Model & labels
    model = ModelDescriptor(
        name='mobilenet_based_classifier',
        input_shape=(1, args.input_height, args.input_width, args.input_depth),
        input_normalizer=(args.input_mean, args.input_std),
        compute_graph=utils.load_compute_graph(args.model_path))
    labels = read_labels(args.label_path)

    with PiCamera() as camera:
        # Forced sensor mode, 1640x1232, full FoV. See:
        # https://picamera.readthedocs.io/en/release-1.13/fov.html#sensor-modes
        # This is the resolution inference run on.
        camera.sensor_mode = 4

        # Scaled and cropped resolution. If different from sensor mode implied
        # resolution, inference results must be adjusted accordingly. This is
        # true in particular when camera.start_recording is used to record an
        # encoded h264 video stream as the Pi encoder can't encode all native
        # sensor resolutions, or a standard one like 1080p may be desired.
        camera.resolution = (1640, 1232)

        # Start the camera stream.
        camera.framerate = 30
        camera.start_preview()

        while True:
            while True:
                long_buffer = []
                short_buffer = []
                pinStatus(pin_A,'LOW',args.gpio_logic)
                pinStatus(pin_B,'LOW',args.gpio_logic)
                pinStatus(pin_C,'LOW',args.gpio_logic)
                leds.update(Leds.rgb_on(GREEN))
                face_box = detect_face()
                print("Entered the loop of face classifier")
                hand_box_params = determine_hand_box_params(face_box)
                if image_boundary_check(hand_box_params):
                    print("Hand gesture identified")
                    break

            # Start hand classifier
            is_active = False
            leds.update(Leds.rgb_on(PURPLE))
            start_timer = time.time()
            with ImageInference(model) as img_inference:
                while True:
                    print("Entered the loop of gesture classifier")
                    #check_termination_trigger()
                    if is_active:
                        leds.update(Leds.rgb_on(RED))
                    hands_image = capture_hands_image(camera,hand_box_params)
                    output = classify_hand_gestures(img_inference,hands_image,model=model,labels=labels,output_layer=args.output_layer,threshold = args.threshold)

                    short_guess, num_short_guess = buffer_update(output,short_buffer,short_buffer_length)
                    long_guess, num_long_guess = buffer_update(output,long_buffer,long_buffer_length)

                    # Activation of classifier                  
                    if (long_guess == activation_index or long_guess == deactivation_index) and not is_active and num_long_guess >= (long_buffer_length - 3):
                        is_active = True
                        leds.update(Leds.rgb_on(RED))
                        send_signal_to_pins(activation_index,args.gpio_logic)
                        long_buffer = []                      
                        num_long_guess = 0                     
                        time.sleep(1)

                    # Deactivation of classifier (go back to stable face detection)                  
                    if (long_guess == activation_index or long_guess == deactivation_index) and is_active and num_long_guess >= (long_buffer_length - 3):
                        is_active = False
                        leds.update(Leds.rgb_off())
                        long_buffer = []
                        num_long_guess = 0                     
                        send_signal_to_pins(deactivation_index,args.gpio_logic)                      
                        time.sleep(1)
                        break

                    # If not activated within max_no_activity_period seconds, go back to stable face detection
                    if not is_active:
                        timer = time.time()-start_timer
                        if timer >= max_no_activity_period:
                            leds.update(Leds.rgb_off())
                            send_signal_to_pins(deactivation_index,args.gpio_logic)                      
                            time.sleep(1)
                            break
                    else:
                        start_timer = time.time()  

                        # Displaying classified hand gesture commands
                        if num_short_guess >= (short_buffer_length-1) and is_active:
                            print_hand_command(short_guess)
                            send_signal_to_pins(short_guess,args.gpio_logic)
 
        camera.stop_preview()
コード例 #20
0
def main():
    model_path = '/opt/aiy/models/retrained_graph.binaryproto'
    #model_path = '/opt/aiy/models/mobilenet_v1_160res_0.5_imagenet.binaryproto'
    label_path = '/opt/aiy/models/retrained_labels_new.txt'
    #label_path = '/opt/aiy/models/mobilenet_v1_160res_0.5_imagenet_labels.txt'
    model_path = '/opt/aiy/models/rg_v3_new.binaryproto'
    label_path = '/opt/aiy/models/retrained_labels_new.txt'
    input_height = 160
    input_width = 160
    input_layer = 'input'
    output_layer = 'final_result'
    threshold = 0.8
    # Model & labels
    model = ModelDescriptor(
        name='mobilenet_based_classifier',
        input_shape=(1, input_height, input_width, 3),
        input_normalizer=(128.0, 128.0),
        compute_graph=utils.load_compute_graph(model_path))
    labels = read_labels(label_path)
    new_labels = []
    for eachLabel in labels:
        if len(eachLabel)>1:
            new_labels.append(eachLabel)
    labels = new_labels
    #print(labels)
    s = xmlrpc.client.ServerProxy("http://aiy.mdzz.info:8000/")
    player = TonePlayer(BUZZER_GPIO, 10)
    player.play(*MODEL_LOAD_SOUND)
    while True:
        while True:
            if s.camera() == 1:
                print('vision kit is woken up')
                with Leds() as leds:
                    leds.pattern = Pattern.blink(100)
                    leds.update(Leds.rgb_pattern(Color.RED))
                    time.sleep(2.0)
                start_time = round(time.time())
                break
            time.sleep(0.2)
            print('no signal, sleeping...')

        with PiCamera() as camera:
            # Configure camera
            camera.sensor_mode = 4
            camera.resolution = (1664, 1232)  # Full Frame, 16:9 (Camera v2)
            camera.framerate = 30
            camera.start_preview()
            while True:
                # Do inference on VisionBonnet
                #print('Start capturing')
                with CameraInference(face_detection.model()) as inference:
                    for result in inference.run():
                        #print(type(result))
                        faces = face_detection.get_faces(result)
                        if len(faces) >= 1:
                            #print('camera captures...')
                            extension = '.jpg'
                            filename = time.strftime('%Y-%m-%d %H:%M:%S') + extension
                            camera.capture(filename)
                            image_npp = np.empty((1664 * 1232 * 3,), dtype=np.uint8)
                            camera.capture(image_npp, 'rgb')
                            image_npp = image_npp.reshape((1232, 1664, 3))
                            image_npp = image_npp[:1232, :1640, :]
                            # image = Image.open('jj.jpg')
                            # draw = ImageDraw.Draw(image)
                            faces_data = []
                            faces_cropped = []
                            for i, face in enumerate(faces):
                                # print('Face #%d: %s' % (i, face))
                                x, y, w, h = face.bounding_box
                                #print(x,y,w,h)
                                w_rm = int(0.3 * w / 2)
                                face_cropped = crop_np((x, y, w, h), w_rm, image_npp)
                                if face_cropped is None: continue #print('face_cropped None'); continue
                                # faces_data.append(image[y: y + h, x + w_rm: x + w - w_rm])
                                # image[y: y + h, x + w_rm: x + w - w_rm].save('1.jpg')
                                face_cropped.save('face_cropped_'+str(i)+'.jpg')
                                faces_cropped.append(face_cropped)
                                #break
                            break
                        # else:
                        #     tt = round(time.time()) - start_time
                        #     if tt > 10:
                        #         break
                    #print('face cutting finishes')

                #print(type(faces_cropped), len(faces_cropped))
                player.play(*BEEP_SOUND)
                flag = 0
                for eachFace in faces_cropped:
                    #print(type(eachFace))
                    if eachFace is None: flag = 1
                if (len(faces_cropped)) <= 0: flag = 1
                if flag == 1: continue
                with ImageInference(model) as img_inference:
                #with CameraInference(model) as img_inference:
                    print('Entering classify_hand_gestures()')
                    output = classify_hand_gestures(img_inference, faces_cropped, model=model, labels=labels,
                                                    output_layer=output_layer, threshold=threshold)
                #print(output)
                if (output == 3):
                    player.play(*JOY_SOUND)
                    print('Yani face detected')
                    print(s.result("Owner", filename))
                else:
                    player.play(*SAD_SOUND)
                    print('Suspicious face detected')
                    print(s.result("Unknown Face", filename))
                upload(filename)
                # Stop preview #
                #break
                while (s.camera()==0):
                    print('sleeping')
                    time.sleep(.2)
                print('Waken up')