コード例 #1
0
    prefixes = args.prefix
    scale = args.scale
    scale_min = args.scale_min
    scale_max = args.scale_max

    verbose = args.verbosity

    au.setup_logger(verbose)

    #checking number of files processed
    nmasks = len(masklst)
    nouts = 0
    m = 0
    for maskf in masklst:
        if not scale:
            ofname = au.features_str() + get_out_extension(otype)
        else:
            ofname = au.features_str() + '.' + au.scaled_str(
            ) + get_out_extension(otype)

        if prefixes[m]:
            ofname = prefixes[m] + '_' + ofname

        oc = len(au.find(os.listdir(outdir), ofname))
        nouts += oc
        m += 1

    if nouts >= nmasks:
        au.log.debug('Nothing to do in ' + outdir + '. All files processed.')
        return -1
    else:
コード例 #2
0
               fmt='%s')
    np.savetxt(outdir + os.path.sep + au.included_subjlabels_str(),
               labels,
               fmt='%i')

    if excluf:
        np.savetxt(outdir + os.path.sep + au.excluded_subjects_str(),
                   exclusubjs,
                   fmt='%s')
        np.savetxt(outdir + os.path.sep + au.excluded_subjlabels_str(),
                   exclulabels,
                   fmt='%i')

    #saving the feature matrix and labels in a binary file

    filename = set_filename(outdir, prefix + '_' + au.features_str(), otype)

    print('Creating ' + filename)

    if otype == 'numpybin':
        np.save(filename, feats)

    elif otype == 'octave':
        sio.savemat(filename, {au.feats_str(): feats, au.labels_str(): labels})

    elif otype == 'svmperf':
        labels[labels == 0] = -1
        ae.write_svmperf_dat(filename, dataname, feats, labels)
        if excluf:
            exclulabels[exclulabels == 0] = -1
            exclfilename = set_filename(
コード例 #3
0
    prefixes = args.prefix
    scale = args.scale
    scale_min = args.scale_min
    scale_max = args.scale_max

    verbose = args.verbosity

    au.setup_logger(verbose)

    # checking number of files processed
    nmasks = len(masklst)
    nouts = 0
    m = 0
    for maskf in masklst:
        if not scale:
            ofname = au.features_str() + get_out_extension(otype)
        else:
            ofname = au.features_str() + "." + au.scaled_str() + get_out_extension(otype)

        if prefixes[m]:
            ofname = prefixes[m] + "_" + ofname

        oc = len(au.find(os.listdir(outdir), ofname))
        nouts += oc
        m += 1

    if nouts >= nmasks:
        au.log.debug("Nothing to do in " + outdir + ". All files processed.")
        return -1
    else:
        au.log.debug("Processing to output in: " + outdir)
コード例 #4
0
         vold       = nib.load(s)
         vol        = vold.get_data()
         exclfeats[c,:] = vol[mask > 0]
         c += 1

   #saving description files
   np.savetxt(outdir + os.path.sep + au.included_subjects_str(),      subjs,       fmt='%s')
   np.savetxt(outdir + os.path.sep + au.included_subjlabels_str(),    labels,      fmt='%i')

   if excluf:
      np.savetxt(outdir + os.path.sep + au.excluded_subjects_str(),   exclusubjs,  fmt='%s')
      np.savetxt(outdir + os.path.sep + au.excluded_subjlabels_str(), exclulabels, fmt='%i')

   #saving the feature matrix and labels in a binary file

   filename = set_filename (outdir, prefix + '_' + au.features_str(), otype)

   print ('Creating ' + filename)

   if otype == 'numpybin':
      np.save (filename, feats)

   elif otype == 'octave':
      sio.savemat (filename, {au.feats_str(): feats, au.labels_str(): labels})

   elif otype == 'svmperf':
      labels[labels == 0] = -1
      ae.write_svmperf_dat(filename, dataname, feats, labels)
      if excluf:
         exclulabels[exclulabels == 0] = -1
         exclfilename = set_filename(outdir, prefix + '_' + au.excluded_str() + au.feats_str(), otype)