コード例 #1
0
ファイル: build_module.py プロジェクト: wxyhv/akg
def lower(sch, args, shape_params=None, name="default_function", binds=None, attrs=None,
          simple_mode=False, polyhedral=False, tuning=False, target="cce"):
    """Lowering function."""
    tmp_binds = None
    if binds is not None:
        tmp_binds = None if not bool(binds) else binds
    tmp_attrs = None
    if attrs is not None:
        tmp_attrs = None if not bool(attrs) else attrs
    if shape_params is None:
        shape_params = []

    cfg = _api_internal._GetCurrentBuildConfig()
    ret = _api_internal._Lower(sch, args, shape_params, name,
                               tmp_binds, tmp_attrs, simple_mode,
                               polyhedral, tuning, target, cfg)

    level = tmp_attrs.get("help_tiling")
    if tuning or (level is not None and level > help_tiling_level['None']):
        level = help_tiling_level['Tuning'] if tuning else level
        global tuning_spaces
        tuning_spaces = {}
        tuning_spaces["index"] = ret.index_table.asnumpy().tolist()
        tuning_spaces["c1_range"] = ret.c1_tile_range_table.asnumpy().tolist()
        tuning_spaces["c0_range"] = ret.c0_tile_range_table.asnumpy().tolist()
        tuning_spaces["c1_mod"] = ret.c1_tile_mod_table.asnumpy().tolist()
        tuning_spaces["c0_mod"] = ret.c0_tile_mod_table.asnumpy().tolist()
        if level >= help_tiling_level["Candidates"]:
            tuning_spaces["tuning_space"] = ret.tiling_candidate.asnumpy().tolist()
        if not tuning:
            dump_tiling_info(level)
    return ret
コード例 #2
0
ファイル: build_module.py プロジェクト: mindspore-ai/akg
def lower(sch, args, shape_params=None, name="default_function", binds=None, attrs=None,
          simple_mode=False, polyhedral=False, tuning=False, target="cce"):
    """Lowering function."""
    tmp_binds = None
    if binds is not None:
        tmp_binds = None if not bool(binds) else binds
    tmp_attrs = None
    if attrs is not None:
        tmp_attrs = None if not bool(attrs) else attrs
    if shape_params is None:
        shape_params = []

    cfg = _api_internal._GetCurrentBuildConfig()
    ret = _api_internal._Lower(sch, args, shape_params, name,
                               tmp_binds, tmp_attrs, simple_mode,
                               polyhedral, tuning, target, cfg)

    level = tmp_attrs.get("help_tiling")
    if attrs.get("use_new_space", False):
        # new space: constraints format
        print("NEW SPACE: ", ret)
        space = dict()
        space['tune_schedule'] = ret.tune_schedule
        space['tune_constraints'] = ret.tune_constraints
        return space
    elif tuning or (level is not None and level > help_tiling_level['None']):
        level = help_tiling_level['Tuning'] if tuning else level
        global tuning_spaces
        tuning_spaces = {}
        tuning_spaces["index"] = ret.index_table.asnumpy().tolist()
        tuning_spaces["c1_range"] = ret.c1_tile_range_table.asnumpy().tolist()
        tuning_spaces["c0_range"] = ret.c0_tile_range_table.asnumpy().tolist()
        tuning_spaces["c1_mod"] = ret.c1_tile_mod_table.asnumpy().tolist()
        tuning_spaces["c0_mod"] = ret.c0_tile_mod_table.asnumpy().tolist()
        tuning_spaces["thread_range"] = ret.gpu_thread_range_table.asnumpy().tolist()
        tuning_spaces["block_range"] = ret.gpu_block_range_table.asnumpy().tolist()
        tuning_spaces["thread_mod"] = ret.gpu_thread_mod_table.asnumpy().tolist()
        tuning_spaces["block_mod"] = ret.gpu_block_mod_table.asnumpy().tolist()
        if level >= help_tiling_level["Candidates"]:
            tuning_spaces["tuning_space"] = ret.tiling_candidate.asnumpy().tolist()
        if not tuning:
            dump_tiling_info(level)
    return ret