class FakeCam: def __init__( self, fps: int, width: int, height: int, codec: str, scale_factor: float, no_background: bool, background_blur: int, background_keep_aspect: bool, use_foreground: bool, hologram: bool, tiling: bool, bodypix_url: str, socket: str, background_image: str, foreground_image: str, foreground_mask_image: str, webcam_path: str, v4l2loopback_path: str, use_akvcam: bool, use_opencv: bool, ) -> None: self.no_background = no_background self.use_foreground = use_foreground self.hologram = hologram self.tiling = tiling self.background_blur = background_blur self.background_keep_aspect = background_keep_aspect self.background_image = background_image self.foreground_image = foreground_image self.foreground_mask_image = foreground_mask_image self.scale_factor = scale_factor self.real_cam = RealCam(webcam_path, width, height, fps, codec) # In case the real webcam does not support the requested mode. self.width = self.real_cam.get_frame_width() self.height = self.real_cam.get_frame_height() self.use_akvcam = use_akvcam self.use_opencv = use_opencv if not use_akvcam: self.fake_cam = pyfakewebcam.FakeWebcam(v4l2loopback_path, self.width, self.height) else: self.fake_cam = AkvCameraWriter(v4l2loopback_path, self.width, self.height) self.foreground_mask = None self.inverted_foreground_mask = None self.session = requests.Session() if use_opencv == None: if bodypix_url.startswith('/'): print("Looks like you want to use a unix socket") # self.session = requests_unixsocket.Session() self.bodypix_url = "http+unix:/" + bodypix_url self.socket = bodypix_url requests_unixsocket.monkeypatch() else: self.bodypix_url = bodypix_url self.socket = "" #If the session can't connect, set the session to None so that _get_mask will fall back #on to openCV # self.session = requests.Session() self.images: Dict[str, Any] = {} self.image_lock = asyncio.Lock() async def _get_mask(self, frame, session): frame = cv2.resize(frame, (0, 0), fx=self.scale_factor, fy=self.scale_factor) _, data = cv2.imencode(".png", frame) #print("Posting to " + self.bodypix_url) if self.use_opencv is False: async with session.post( url=self.bodypix_url, data=data.tobytes(), headers={"Content-Type": "application/octet-stream"}) as r: mask = np.frombuffer(await r.read(), dtype=np.uint8) mask = mask.reshape((frame.shape[0], frame.shape[1])) mask = cv2.resize(mask, (0, 0), fx=1 / self.scale_factor, fy=1 / self.scale_factor, interpolation=cv2.INTER_NEAREST) mask = cv2.dilate(mask, np.ones((10, 10), np.uint8), iterations=1) mask = cv2.blur(mask.astype(float), (30, 30)) else: backSub = self.real_cam.get_backsub() #Blur the frame (just like the backSub) frame = cv2.GaussianBlur(frame, (15, 15), 0) #frame = cv2.blur(frame,(5,5),0) mask = backSub.apply(frame, 0, 0) mask = mask.reshape((frame.shape[0], frame.shape[1])) _, mask = cv2.threshold(mask, 90, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) contours, hierarchy = cv2.findContours( mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:] try: contour = max(contours, key=cv2.contourArea) mask = np.zeros((frame.shape[0], frame.shape[1])) cv2.drawContours(mask, [contour], -1, (255, 255, 255), thickness=-1) except: pass #mask = cv2.GaussianBlur(mask,(15,15),0) #mask = cv2.blur(mask,(15,15),0) mask = cv2.resize(mask, (0, 0), fx=1 / self.scale_factor, fy=1 / self.scale_factor, interpolation=cv2.INTER_NEAREST) mask = -mask #If the mask lets more than 40% of the image through, let nothing through #if((numpy.sum(mask)/np.size(mask))> .4): # mask = 0 #If I were to do contour detection, it would be here: #else: # pass return mask def shift_image(self, img, dx, dy): img = np.roll(img, dy, axis=0) img = np.roll(img, dx, axis=1) if dy > 0: img[:dy, :] = 0 elif dy < 0: img[dy:, :] = 0 if dx > 0: img[:, :dx] = 0 elif dx < 0: img[:, dx:] = 0 return img """Rescale image to dimensions self.width, self.height. If keep_aspect is True then scale & crop the image so that its pixels retain their aspect ratio.""" def resize_image(self, img, keep_aspect): if self.width == 0 or self.height == 0: raise RuntimeError("Camera dimensions error w={} h={}".format( self.width, self.height)) if keep_aspect: imgheight, imgwidth, = img.shape[:2] scale = max(self.width / imgwidth, self.height / imgheight) newimgwidth, newimgheight = int(np.floor(self.width / scale)), int( np.floor(self.height / scale)) ix0 = int(np.floor(0.5 * imgwidth - 0.5 * newimgwidth)) iy0 = int(np.floor(0.5 * imgheight - 0.5 * newimgheight)) img = cv2.resize( img[iy0:iy0 + newimgheight, ix0:ix0 + newimgwidth, :], (self.width, self.height)) else: img = cv2.resize(img, (self.width, self.height)) return img async def load_images(self): async with self.image_lock: self.images: Dict[str, Any] = {} background = cv2.imread(self.background_image) if background is not None: if not self.tiling: background = self.resize_image(background, self.background_keep_aspect) else: sizey, sizex = background.shape[0], background.shape[1] if sizex > self.width and sizey > self.height: background = cv2.resize(background, (self.width, self.height)) else: repx = (self.width - 1) // sizex + 1 repy = (self.height - 1) // sizey + 1 background = np.tile(background, (repy, repx, 1)) background = background[0:self.height, 0:self.width] background = itertools.repeat(background) else: background_video = cv2.VideoCapture(self.background_image) if not background_video.isOpened(): raise RuntimeError("Couldn't open video '{}'".format( self.background_image)) self.bg_video_fps = background_video.get(cv2.CAP_PROP_FPS) # Initiate current fps to background video fps self.current_fps = self.bg_video_fps def read_frame(): ret, frame = background_video.read() if not ret: background_video.set(cv2.CAP_PROP_POS_FRAMES, 0) ret, frame = background_video.read() assert ret, 'cannot read frame %r' % self.background_image return self.resize_image(frame, self.background_keep_aspect) def next_frame(): while True: advrate = self.bg_video_fps / self.current_fps # Number of frames we need to advance background movie. Fractional. if advrate < 1: # Number of frames<1 so to avoid movie freezing randomly choose whether to advance by one frame with correct probability. self.bg_video_adv_rate = 1 if np.random.uniform( ) < advrate else 0 else: # Just round to nearest number of frames when >=1. self.bg_video_adv_rate = round(advrate) for i in range(self.bg_video_adv_rate): frame = read_frame() yield frame background = next_frame() self.images["background"] = background if self.use_foreground and self.foreground_image is not None: foreground = cv2.imread(self.foreground_image) self.images["foreground"] = cv2.resize( foreground, (self.width, self.height)) foreground_mask = cv2.imread(self.foreground_mask_image) foreground_mask = cv2.normalize(foreground_mask, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) foreground_mask = cv2.resize(foreground_mask, (self.width, self.height)) self.images["foreground_mask"] = cv2.cvtColor( foreground_mask, cv2.COLOR_BGR2GRAY) self.images["inverted_foreground_mask"] = 1 - self.images[ "foreground_mask"] def hologram_effect(self, img): # add a blue tint holo = cv2.applyColorMap(img, cv2.COLORMAP_WINTER) # add a halftone effect bandLength, bandGap = 3, 4 for y in range(holo.shape[0]): if y % (bandLength + bandGap) < bandLength: holo[y, :, :] = holo[y, :, :] * np.random.uniform(0.1, 0.3) # add some ghosting holo_blur = cv2.addWeighted(holo, 0.2, self.shift_image(holo.copy(), 5, 5), 0.8, 0) holo_blur = cv2.addWeighted(holo_blur, 0.4, self.shift_image(holo.copy(), -5, -5), 0.6, 0) # combine with the original color, oversaturated out = cv2.addWeighted(img, 0.5, holo_blur, 0.6, 0) return out async def mask_frame(self, session, frame): # fetch the mask with retries (the app needs to warmup and we're lazy) # e v e n t u a l l y c o n s i s t e n t mask = None while mask is None: try: mask = await self._get_mask(frame, session) except Exception as e: print(f"Mask request failed, retrying: {e}") traceback.print_exc() foreground_frame = background_frame = frame if self.hologram: foreground_frame = self.hologram_effect(foreground_frame) background_frame = cv2.blur( frame, (self.background_blur, self.background_blur), cv2.BORDER_DEFAULT) # composite the foreground and background async with self.image_lock: if self.no_background is False: background_frame = next(self.images["background"]) for c in range(frame.shape[2]): frame[:, :, c] = foreground_frame[:, :, c] * mask + background_frame[:, :, c] * ( 1 - mask ) if self.use_foreground and self.foreground_image is not None: for c in range(frame.shape[2]): frame[:, :, c] = (frame[:, :, c] * self.images["inverted_foreground_mask"] + self.images["foreground"][:, :, c] * self.images["foreground_mask"]) return frame def put_frame(self, frame): self.fake_cam.schedule_frame(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) def stop(self): self.real_cam.stop() if self.use_akvcam: self.fake_cam.__del__() async def run(self): await self.load_images() self.real_cam.start() if self.socket != "": conn = aiohttp.UnixConnector(path=self.socket) else: conn = None async with aiohttp.ClientSession(connector=conn) as session: t0 = time.monotonic() print_fps_period = 1 frame_count = 0 while True: frame = self.real_cam.read() if frame is None: await asyncio.sleep(0.1) continue frame = await self.mask_frame(session, frame) self.put_frame(frame) frame_count += 1 td = time.monotonic() - t0 if td > print_fps_period: self.current_fps = frame_count / td print("FPS: {:6.2f}".format(self.current_fps), end="\r") frame_count = 0 t0 = time.monotonic()
class FakeCam: def __init__(self, fps: int, width: int, height: int, codec: str, no_background: bool, background_blur: int, background_keep_aspect: bool, use_foreground: bool, hologram: bool, tiling: bool, background_image: str, foreground_image: str, foreground_mask_image: str, webcam_path: str, v4l2loopback_path: str, use_akvcam: bool) -> None: self.no_background = no_background self.use_foreground = use_foreground self.hologram = hologram self.tiling = tiling self.background_blur = background_blur self.background_keep_aspect = background_keep_aspect self.background_image = background_image self.foreground_image = foreground_image self.foreground_mask_image = foreground_mask_image self.real_cam = RealCam(webcam_path, width, height, fps, codec) # In case the real webcam does not support the requested mode. self.width = self.real_cam.get_frame_width() self.height = self.real_cam.get_frame_height() self.use_akvcam = use_akvcam if not use_akvcam: self.fake_cam = pyfakewebcam.FakeWebcam(v4l2loopback_path, self.width, self.height) else: self.fake_cam = AkvCameraWriter(v4l2loopback_path, self.width, self.height) self.foreground_mask = None self.inverted_foreground_mask = None self.images: Dict[str, Any] = {} self.image_lock = asyncio.Lock() self.bodypix_model = load_model( download_model(BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16)) def _get_mask(self, frame): res = self.bodypix_model.predict_single(frame) mask = res.get_mask(threshold=0.60) mask = np.frombuffer(mask, dtype=np.uint32) mask = mask.reshape((frame.shape[0], frame.shape[1])) mask = cv2.dilate(mask.astype(float), np.ones((10, 10), np.uint8), iterations=1) mask = cv2.blur(mask.astype(float), (30, 30)) return mask def shift_image(self, img, dx, dy): img = np.roll(img, dy, axis=0) img = np.roll(img, dx, axis=1) if dy > 0: img[:dy, :] = 0 elif dy < 0: img[dy:, :] = 0 if dx > 0: img[:, :dx] = 0 elif dx < 0: img[:, dx:] = 0 return img """Rescale image to dimensions self.width, self.height. If keep_aspect is True then scale & crop the image so that its pixels retain their aspect ratio.""" def resize_image(self, img, keep_aspect): if self.width == 0 or self.height == 0: raise RuntimeError("Camera dimensions error w={} h={}".format( self.width, self.height)) if keep_aspect: imgheight, imgwidth, = img.shape[:2] scale = max(self.width / imgwidth, self.height / imgheight) newimgwidth, newimgheight = int(np.floor(self.width / scale)), int( np.floor(self.height / scale)) ix0 = int(np.floor(0.5 * imgwidth - 0.5 * newimgwidth)) iy0 = int(np.floor(0.5 * imgheight - 0.5 * newimgheight)) img = cv2.resize( img[iy0:iy0 + newimgheight, ix0:ix0 + newimgwidth, :], (self.width, self.height)) else: img = cv2.resize(img, (self.width, self.height)) return img async def load_images(self): async with self.image_lock: self.images: Dict[str, Any] = {} background = cv2.imread(self.background_image) if background is not None: if not self.tiling: background = self.resize_image(background, self.background_keep_aspect) else: sizey, sizex = background.shape[0], background.shape[1] if sizex > self.width and sizey > self.height: background = cv2.resize(background, (self.width, self.height)) else: repx = (self.width - 1) // sizex + 1 repy = (self.height - 1) // sizey + 1 background = np.tile(background, (repy, repx, 1)) background = background[0:self.height, 0:self.width] background = itertools.repeat(background) else: background_video = cv2.VideoCapture(self.background_image) if not background_video.isOpened(): raise RuntimeError("Couldn't open video '{}'".format( self.background_image)) self.bg_video_fps = background_video.get(cv2.CAP_PROP_FPS) # Initiate current fps to background video fps self.current_fps = self.bg_video_fps def read_frame(): ret, frame = background_video.read() if not ret: background_video.set(cv2.CAP_PROP_POS_FRAMES, 0) ret, frame = background_video.read() assert ret, 'cannot read frame %r' % self.background_image return self.resize_image(frame, self.background_keep_aspect) def next_frame(): while True: advrate = self.bg_video_fps / self.current_fps # Number of frames we need to advance background movie. Fractional. if advrate < 1: # Number of frames<1 so to avoid movie freezing randomly choose whether to advance by one frame with correct probability. self.bg_video_adv_rate = 1 if np.random.uniform( ) < advrate else 0 else: # Just round to nearest number of frames when >=1. self.bg_video_adv_rate = round(advrate) for i in range(self.bg_video_adv_rate): frame = read_frame() yield frame background = next_frame() self.images["background"] = background if self.use_foreground and self.foreground_image is not None: foreground = cv2.imread(self.foreground_image) self.images["foreground"] = cv2.resize( foreground, (self.width, self.height)) foreground_mask = cv2.imread(self.foreground_mask_image) foreground_mask = cv2.normalize(foreground_mask, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) foreground_mask = cv2.resize(foreground_mask, (self.width, self.height)) self.images["foreground_mask"] = cv2.cvtColor( foreground_mask, cv2.COLOR_BGR2GRAY) self.images["inverted_foreground_mask"] = 1 - self.images[ "foreground_mask"] def hologram_effect(self, img): # add a blue tint holo = cv2.applyColorMap(img, cv2.COLORMAP_WINTER) # add a halftone effect bandLength, bandGap = 3, 4 for y in range(holo.shape[0]): if y % (bandLength + bandGap) < bandLength: holo[y, :, :] = holo[y, :, :] * np.random.uniform(0.1, 0.3) # add some ghosting holo_blur = cv2.addWeighted(holo, 0.2, self.shift_image(holo.copy(), 5, 5), 0.8, 0) holo_blur = cv2.addWeighted(holo_blur, 0.4, self.shift_image(holo.copy(), -5, -5), 0.6, 0) # combine with the original color, oversaturated out = cv2.addWeighted(img, 0.5, holo_blur, 0.6, 0) return out async def mask_frame(self, frame): # fetch the mask with retries (the app needs to warmup and we're lazy) # e v e n t u a l l y c o n s i s t e n t mask = None while mask is None: try: mask = self._get_mask(frame) except Exception as e: print(f"Mask request failed, retrying: {e}") traceback.print_exc() foreground_frame = background_frame = frame if self.hologram: foreground_frame = self.hologram_effect(foreground_frame) background_frame = cv2.blur( frame, (self.background_blur, self.background_blur), cv2.BORDER_DEFAULT) # composite the foreground and background async with self.image_lock: if self.no_background is False: background_frame = next(self.images["background"]) for c in range(frame.shape[2]): frame[:, :, c] = foreground_frame[:, :, c] * mask + background_frame[:, :, c] * ( 1 - mask ) if self.use_foreground and self.foreground_image is not None: for c in range(frame.shape[2]): frame[:, :, c] = (frame[:, :, c] * self.images["inverted_foreground_mask"] + self.images["foreground"][:, :, c] * self.images["foreground_mask"]) return frame def put_frame(self, frame): self.fake_cam.schedule_frame(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) def stop(self): self.real_cam.stop() if self.use_akvcam: self.fake_cam.__del__() async def run(self): await self.load_images() self.real_cam.start() t0 = time.monotonic() print_fps_period = 1 frame_count = 0 while True: frame = self.real_cam.read() if frame is None: await asyncio.sleep(0.1) continue frame = await self.mask_frame(frame) self.put_frame(frame) frame_count += 1 td = time.monotonic() - t0 if td > print_fps_period: self.current_fps = frame_count / td print("FPS: {:6.2f}".format(self.current_fps), end="\r") frame_count = 0 t0 = time.monotonic()
class FakeCam: def __init__( self, fps: int, width: int, height: int, scale_factor: float, use_foreground: bool, hologram: bool, tiling: bool, bodypix_url: str, background_image: str, foreground_image: str, foreground_mask_image: str, webcam_path: str, v4l2loopback_path: str, use_akvcam: bool ) -> None: self.use_foreground = use_foreground self.hologram = hologram self.tiling = tiling self.background_image = background_image self.foreground_image = foreground_image self.foreground_mask_image = foreground_mask_image self.scale_factor = scale_factor self.bodypix_url = bodypix_url self.real_cam = RealCam(webcam_path, width, height, fps) # In case the real webcam does not support the requested mode. self.width = self.real_cam.get_frame_width() self.height = self.real_cam.get_frame_height() self.use_akvcam = use_akvcam if not use_akvcam: self.fake_cam = pyfakewebcam.FakeWebcam(v4l2loopback_path, self.width, self.height) else: self.fake_cam = AkvCameraWriter(v4l2loopback_path, self.width, self.height) self.foreground_mask = None self.inverted_foreground_mask = None self.session = requests.Session() self.images: Dict[str, Any] = {} self.image_lock = asyncio.Lock() async def _get_mask(self, frame, session): frame = cv2.resize(frame, (0, 0), fx=self.scale_factor, fy=self.scale_factor) _, data = cv2.imencode(".png", frame) async with session.post( url=self.bodypix_url, data=data.tostring(), headers={"Content-Type": "application/octet-stream"} ) as r: mask = np.frombuffer(await r.read(), dtype=np.uint8) mask = mask.reshape((frame.shape[0], frame.shape[1])) mask = cv2.resize( mask, (0, 0), fx=1 / self.scale_factor, fy=1 / self.scale_factor, interpolation=cv2.INTER_NEAREST ) mask = cv2.dilate(mask, np.ones((10, 10), np.uint8), iterations=1) mask = cv2.blur(mask.astype(float), (30, 30)) return mask def shift_image(self, img, dx, dy): img = np.roll(img, dy, axis=0) img = np.roll(img, dx, axis=1) if dy > 0: img[:dy, :] = 0 elif dy < 0: img[dy:, :] = 0 if dx > 0: img[:, :dx] = 0 elif dx < 0: img[:, dx:] = 0 return img async def load_images(self): async with self.image_lock: self.images: Dict[str, Any] = {} background = cv2.imread(self.background_image) if background is not None: if not self.tiling: background = cv2.resize(background, (self.width, self.height)) else: sizey, sizex = background.shape[0], background.shape[1] if sizex > self.width and sizey > self.height: background = cv2.resize(background, (self.width, self.height)) else: repx = (self.width - 1) // sizex + 1 repy = (self.height - 1) // sizey + 1 background = np.tile(background,(repy, repx, 1)) background = background[0:self.height, 0:self.width] background = itertools.repeat(background) else: background_video = cv2.VideoCapture(self.background_image) self.bg_video_fps = background_video.get(cv2.CAP_PROP_FPS) # Initiate current fps to background video fps self.current_fps = self.bg_video_fps def read_frame(): ret, frame = background_video.read() if not ret: background_video.set(cv2.CAP_PROP_POS_FRAMES, 0) ret, frame = background_video.read() assert ret, 'cannot read frame %r' % self.background_image frame = cv2.resize(frame, (self.width, self.height)) return frame def next_frame(): while True: self.bg_video_adv_rate = round(self.bg_video_fps/self.current_fps) for i in range(self.bg_video_adv_rate): frame = read_frame(); yield frame background = next_frame() self.images["background"] = background if self.use_foreground and self.foreground_image is not None: foreground = cv2.imread(self.foreground_image) self.images["foreground"] = cv2.resize(foreground, (self.width, self.height)) foreground_mask = cv2.imread(self.foreground_mask_image) foreground_mask = cv2.normalize( foreground_mask, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) foreground_mask = cv2.resize(foreground_mask, (self.width, self.height)) self.images["foreground_mask"] = cv2.cvtColor( foreground_mask, cv2.COLOR_BGR2GRAY) self.images["inverted_foreground_mask"] = 1 - self.images["foreground_mask"] def hologram_effect(self, img): # add a blue tint holo = cv2.applyColorMap(img, cv2.COLORMAP_WINTER) # add a halftone effect bandLength, bandGap = 2, 3 for y in range(holo.shape[0]): if y % (bandLength+bandGap) < bandLength: holo[y,:,:] = holo[y,:,:] * np.random.uniform(0.1, 0.3) # add some ghosting holo_blur = cv2.addWeighted(holo, 0.2, self.shift_image(holo.copy(), 5, 5), 0.8, 0) holo_blur = cv2.addWeighted(holo_blur, 0.4, self.shift_image(holo.copy(), -5, -5), 0.6, 0) # combine with the original color, oversaturated out = cv2.addWeighted(img, 0.5, holo_blur, 0.6, 0) return out async def mask_frame(self, session, frame): # fetch the mask with retries (the app needs to warmup and we're lazy) # e v e n t u a l l y c o n s i s t e n t mask = None while mask is None: try: mask = await self._get_mask(frame, session) except Exception as e: print(f"Mask request failed, retrying: {e}") traceback.print_exc() if self.hologram: frame = self.hologram_effect(frame) # composite the foreground and background async with self.image_lock: background = next(self.images["background"]) for c in range(frame.shape[2]): frame[:, :, c] = frame[:, :, c] * mask + background[:, :, c] * (1 - mask) if self.use_foreground and self.foreground_image is not None: for c in range(frame.shape[2]): frame[:, :, c] = ( frame[:, :, c] * self.images["inverted_foreground_mask"] + self.images["foreground"][:, :, c] * self.images["foreground_mask"] ) return frame def put_frame(self, frame): self.fake_cam.schedule_frame(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) def stop(self): self.real_cam.stop() if self.use_akvcam: self.fake_cam.__del__() async def run(self): await self.load_images() self.real_cam.start() async with aiohttp.ClientSession() as session: t0 = time.monotonic() print_fps_period = 1 frame_count = 0 while True: frame = self.real_cam.read() if frame is None: await asyncio.sleep(0.1) continue await self.mask_frame(session, frame) self.put_frame(frame) frame_count += 1 td = time.monotonic() - t0 if td > print_fps_period: self.current_fps = frame_count / td print("FPS: {:6.2f}".format(self.current_fps), end="\r") frame_count = 0 t0 = time.monotonic()
class FakeCam: def __init__( self, fps: int, width: int, height: int, codec: str, no_background: bool, background_blur: int, background_keep_aspect: bool, use_foreground: bool, hologram: bool, tiling: bool, socket: str, background_image: str, foreground_image: str, foreground_mask_image: str, webcam_path: str, v4l2loopback_path: str, use_akvcam: bool ) -> None: self.no_background = no_background self.use_foreground = use_foreground self.hologram = hologram self.tiling = tiling self.background_blur = background_blur self.background_keep_aspect = background_keep_aspect self.background_image = background_image self.foreground_image = foreground_image self.foreground_mask_image = foreground_mask_image self.real_cam = RealCam(webcam_path, width, height, fps, codec) # In case the real webcam does not support the requested mode. self.width = self.real_cam.get_frame_width() self.height = self.real_cam.get_frame_height() self.use_akvcam = use_akvcam if not use_akvcam: self.fake_cam = pyfakewebcam.FakeWebcam(v4l2loopback_path, self.width, self.height) else: self.fake_cam = AkvCameraWriter(v4l2loopback_path, self.width, self.height) self.foreground_mask = None self.inverted_foreground_mask = None self.images: Dict[str, Any] = {} self.classifier = mp.solutions.selfie_segmentation.SelfieSegmentation(model_selection=1) def shift_image(self, img, dx, dy): img = np.roll(img, dy, axis=0) img = np.roll(img, dx, axis=1) if dy > 0: img[:dy, :] = 0 elif dy < 0: img[dy:, :] = 0 if dx > 0: img[:, :dx] = 0 elif dx < 0: img[:, dx:] = 0 return img """Rescale image to dimensions self.width, self.height. If keep_aspect is True then scale & crop the image so that its pixels retain their aspect ratio.""" def resize_image(self, img, keep_aspect): if self.width==0 or self.height==0: raise RuntimeError("Camera dimensions error w={} h={}".format(self.width, self.height)) if keep_aspect: imgheight, imgwidth,=img.shape[:2] scale=max(self.width/imgwidth, self.height/imgheight) newimgwidth, newimgheight=int(np.floor(self.width/scale)), int(np.floor(self.height/scale)) ix0=int(np.floor(0.5*imgwidth-0.5*newimgwidth)) iy0=int(np.floor(0.5*imgheight-0.5*newimgheight)) img = cv2.resize(img[iy0:iy0+newimgheight, ix0:ix0+newimgwidth, :], (self.width, self.height)) else: img = cv2.resize(img, (self.width, self.height)) return img def load_images(self): self.images: Dict[str, Any] = {} background = cv2.imread(self.background_image) if background is not None: if not self.tiling: background = self.resize_image(background, self.background_keep_aspect) else: sizey, sizex = background.shape[0], background.shape[1] if sizex > self.width and sizey > self.height: background = cv2.resize(background, (self.width, self.height)) else: repx = (self.width - 1) // sizex + 1 repy = (self.height - 1) // sizey + 1 background = np.tile(background,(repy, repx, 1)) background = background[0:self.height, 0:self.width] background = itertools.repeat(background) else: background_video = cv2.VideoCapture(self.background_image) if not background_video.isOpened(): raise RuntimeError("Couldn't open video '{}'".format(self.background_image)) self.bg_video_fps = background_video.get(cv2.CAP_PROP_FPS) # Initiate current fps to background video fps self.current_fps = self.bg_video_fps def read_frame(): ret, frame = background_video.read() if not ret: background_video.set(cv2.CAP_PROP_POS_FRAMES, 0) ret, frame = background_video.read() assert ret, 'cannot read frame %r' % self.background_image return self.resize_image(frame, self.background_keep_aspect) def next_frame(): while True: advrate=self.bg_video_fps/self.current_fps # Number of frames we need to advance background movie. Fractional. if advrate<1: # Number of frames<1 so to avoid movie freezing randomly choose whether to advance by one frame with correct probability. self.bg_video_adv_rate=1 if np.random.uniform()<advrate else 0 else: # Just round to nearest number of frames when >=1. self.bg_video_adv_rate = round(advrate) for i in range(self.bg_video_adv_rate): frame = read_frame(); yield frame background = next_frame() self.images["background"] = background if self.use_foreground and self.foreground_image is not None: foreground = cv2.imread(self.foreground_image) self.images["foreground"] = cv2.resize(foreground, (self.width, self.height)) foreground_mask = cv2.imread(self.foreground_mask_image) foreground_mask = cv2.normalize( foreground_mask, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) foreground_mask = cv2.resize(foreground_mask, (self.width, self.height)) self.images["foreground_mask"] = cv2.cvtColor( foreground_mask, cv2.COLOR_BGR2GRAY) self.images["inverted_foreground_mask"] = 1 - self.images["foreground_mask"] def hologram_effect(self, img): # add a blue tint holo = cv2.applyColorMap(img, cv2.COLORMAP_WINTER) # add a halftone effect bandLength, bandGap = 3, 4 for y in range(holo.shape[0]): if y % (bandLength+bandGap) < bandLength: holo[y,:,:] = holo[y,:,:] * np.random.uniform(0.1, 0.3) # add some ghosting holo_blur = cv2.addWeighted(holo, 0.2, self.shift_image(holo.copy(), 5, 5), 0.8, 0) holo_blur = cv2.addWeighted(holo_blur, 0.4, self.shift_image(holo.copy(), -5, -5), 0.6, 0) # combine with the original color, oversaturated out = cv2.addWeighted(img, 0.5, holo_blur, 0.6, 0) return out def compose_frame(self, frame): frame.flags.writeable = False mask = self.classifier.process(frame).segmentation_mask if self.hologram: foreground_frame = self.hologram_effect(foreground_frame) # Get background image if self.no_background is False: background_frame = next(self.images["background"]) else: background_frame = cv2.blur(frame, (self.background_blur, self.background_blur), cv2.BORDER_DEFAULT) frame.flags.writeable = True # Replace background for c in range(frame.shape[2]): frame[:, :, c] = frame[:, :, c] * mask + background_frame[:, :, c] * (1 - mask) # Add foreground if needed if self.use_foreground and self.foreground_image is not None: for c in range(frame.shape[2]): frame[:, :, c] = ( frame[:, :, c] * self.images["inverted_foreground_mask"] + self.images["foreground"][:, :, c] * self.images["foreground_mask"] ) return frame def put_frame(self, frame): self.fake_cam.schedule_frame(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) def stop(self): self.real_cam.stop() if self.use_akvcam: self.fake_cam.__del__() def run(self): self.load_images() self.real_cam.start() t0 = time.monotonic() print_fps_period = 1 frame_count = 0 while True: frame = self.real_cam.read() if frame is None: time.sleep(0.1) continue frame = self.compose_frame(frame) self.put_frame(frame) frame_count += 1 td = time.monotonic() - t0 if td > print_fps_period: self.current_fps = frame_count / td print("FPS: {:6.2f}".format(self.current_fps), end="\r") frame_count = 0 t0 = time.monotonic()