コード例 #1
0
def run_train(data_path: Path):
    cfg = BasicConfig(
        seed=444,
        name='test_center_vgg_retrain2',
        num_workers=4,
        gpus=(0,),
        batch_size=24,
        num_epochs=15,
        steps=(4, 9, np.inf),
        warmup_epoch=1,
        cooldown_epoch=2,
        train_augmentations=alb.Compose([
            alb.Resize(128, 128),
            alb.OneOf([
                alb.MotionBlur(blur_limit=5, p=0.2),
                alb.MedianBlur(blur_limit=3, p=0.1),
                alb.Blur(blur_limit=5, p=0.1)
            ], p=0.2),
            alb.OneOf([
                alb.ImageCompression(70, compression_type=alb.ImageCompression.ImageCompressionType.JPEG),
                alb.ImageCompression(70, compression_type=alb.ImageCompression.ImageCompressionType.WEBP)
            ], p=0.2),
            alb.OneOf([
                alb.CLAHE(clip_limit=2),
                alb.IAASharpen(),
                alb.IAAEmboss(),
                alb.RandomBrightnessContrast(),
            ], p=0.1),
            alb.Rotate(5, border_mode=cv2.BORDER_REFLECT, p=0.2),
            alb.OneOf([
                alb.RandomResizedCrop(112, 112, scale=(0.9, 1.0), ratio=(0.8, 1.1), p=0.5),
                alb.Resize(112, 112, p=0.5),
            ], p=1.0),
            alb.HorizontalFlip(p=0.5),
            alb.HueSaturationValue(p=0.7),
            alb.ChannelShuffle(p=0.5)
        ]),
        normalize=True,
        weight_normalize=True,
        uniform_subjects=True,
        classifier_mult=3,
        lr_factor=0.1,
        initial_lr=1e-2,
        # extra_rec=(Path('/run/media/andrey/Fast/FairFace/faces_emore/train.rec'),)
    )
    np.random.seed(cfg.seed)
    mx.random.seed(cfg.seed)
    train_df = load_info(data_path, Path('data/train_df.csv'))
    lib.train.train(cfg, train_df)
コード例 #2
0
def medium_3(image_size, p=1.0):
    cutout_crop = int(0.25 * image_size)
    return A.Compose(
        [
            # RandomCrop(input_size) / RandomResizedCrop (0.08, 1)
            A.HorizontalFlip(p=0.5),  # vflip
            A.VerticalFlip(p=0.5),  # hflip
            A.ShiftScaleRotate(
                shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.3),
            A.OneOf([
                A.RandomFog(
                    fog_coef_lower=0.3, fog_coef_upper=1.0, alpha_coef=.1),
                A.ImageCompression(quality_lower=20, quality_upper=99),
            ],
                    p=0.3),
            A.RandomBrightnessContrast(brightness_limit=0.125,
                                       contrast_limit=0.2,
                                       p=0.5),  # contrast_limit=0.5
            A.HueSaturationValue(hue_shift_limit=5,
                                 sat_shift_limit=30,
                                 val_shift_limit=20,
                                 p=0.2),
            A.GaussNoise(var_limit=(1, 50), p=0.4),
            A.CoarseDropout(min_holes=1,
                            max_holes=2,
                            max_height=cutout_crop,
                            max_width=cutout_crop,
                            p=0.5),
        ],
        p=p)
コード例 #3
0
 def __init__(self, p=0.1, quality_lower=40, quality_upper=90):
     self.p = p
     self.quality_lower = quality_lower
     self.quality_upper = quality_upper
     self.aug = A.ImageCompression(p=p,
                                   quality_lower=quality_lower,
                                   quality_upper=quality_upper)
コード例 #4
0
def get_strong_train_transform():
    return A.Compose(
        [
            #A.Resize(height=IMG_SIZE, width=IMG_SIZE, p=1),
            A.RandomSizedBBoxSafeCrop(
                IMG_SIZE, IMG_SIZE, interpolation=1, p=0.33),
            A.HorizontalFlip(),
            A.ShiftScaleRotate(shift_limit=0.05,
                               scale_limit=0.1,
                               rotate_limit=10,
                               interpolation=1,
                               p=0.5),
            A.OneOf([
                A.Blur(blur_limit=(1, 3), p=0.33),
                A.MedianBlur(blur_limit=3, p=0.33),
                A.ImageCompression(quality_lower=50, p=0.33),
            ],
                    p=0.5),
            A.OneOf([
                A.RandomGamma(gamma_limit=(85, 115), p=0.33),
                A.RandomBrightnessContrast(brightness_limit=0.2, p=0.33),
                A.HueSaturationValue(hue_shift_limit=25,
                                     sat_shift_limit=25,
                                     val_shift_limit=30,
                                     p=0.5)
            ],
                    p=0.34),
            A.CLAHE(clip_limit=2.5, p=0.5),
            A.Normalize(always_apply=True, p=1.0),
            ToTensorV2(p=1.0)
        ],
        bbox_params=A.BboxParams(format='pascal_voc',
                                 min_area=5,
                                 min_visibility=0.1,
                                 label_fields=['labels']))
コード例 #5
0
def get_transforms(image_size):

    transforms_train = albumentations.Compose([
        albumentations.HorizontalFlip(p=0.5),
        albumentations.ImageCompression(quality_lower=99, quality_upper=100),
        albumentations.ShiftScaleRotate(shift_limit=0.2,
                                        scale_limit=0.2,
                                        rotate_limit=10,
                                        border_mode=0,
                                        p=0.7),
        albumentations.Resize(image_size, image_size),
        albumentations.Cutout(
            max_h_size=int(image_size * 0.4),
            max_w_size=int(image_size * 0.4),
            num_holes=1,
            p=0.5,
        ),
        albumentations.Normalize(),
    ])

    transforms_val = albumentations.Compose([
        albumentations.Resize(image_size, image_size),
        albumentations.Normalize()
    ])

    return transforms_train, transforms_val
コード例 #6
0
    def __init__(self):
        self.transform = None
        try:
            import albumentations as A
            check_version(A.__version__, '1.0.3',
                          hard=True)  # version requirement

            self.transform = A.Compose([
                A.Blur(p=0.01),
                A.MedianBlur(p=0.01),
                A.ToGray(p=0.01),
                A.CLAHE(p=0.01),
                A.RandomBrightnessContrast(p=0.0),
                A.RandomGamma(p=0.0),
                A.ImageCompression(quality_lower=75, p=0.0)
            ],
                                       bbox_params=A.BboxParams(
                                           format='yolo',
                                           label_fields=['class_labels']))

            LOGGER.info(
                colorstr('albumentations: ') +
                ', '.join(f'{x}' for x in self.transform.transforms if x.p))
        except ImportError:  # package not installed, skip
            pass
        except Exception as e:
            LOGGER.info(colorstr('albumentations: ') + f'{e}')
コード例 #7
0
    def __init__(self, root_dir, is_train):
        super(FaceDataset, self).__init__()

        #self.local_rank = local_rank
        self.is_train = is_train
        self.input_size = 256
        self.num_kps = 68
        transform_list = []
        if is_train:
            transform_list += \
                [
                    A.ColorJitter(brightness=0.8, contrast=0.5, p=0.5),
                    A.ToGray(p=0.1),
                    A.ISONoise(p=0.1),
                    A.MedianBlur(blur_limit=(1,7), p=0.1),
                    A.GaussianBlur(blur_limit=(1,7), p=0.1),
                    A.MotionBlur(blur_limit=(5,12), p=0.1),
                    A.ImageCompression(quality_lower=50, quality_upper=90, p=0.05),
                    A.ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=40, interpolation=cv2.INTER_LINEAR,
                        border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=0.8),
                    A.HorizontalFlip(p=0.5),
                    RectangleBorderAugmentation(limit=0.33, fill_value=0, p=0.2),
                ]
        transform_list += \
            [
                A.geometric.resize.Resize(self.input_size, self.input_size, interpolation=cv2.INTER_LINEAR, always_apply=True),
                A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
                ToTensorV2(),
            ]
        self.transform = A.ReplayCompose(transform_list,
                                         keypoint_params=A.KeypointParams(
                                             format='xy',
                                             remove_invisible=False))
        self.root_dir = root_dir
        with open(osp.join(root_dir, 'annot.pkl'), 'rb') as f:
            annot = pickle.load(f)
            self.X, self.Y = annot
        train_size = int(len(self.X) * 0.99)

        if is_train:
            self.X = self.X[:train_size]
            self.Y = self.Y[:train_size]
        else:
            self.X = self.X[train_size:]
            self.Y = self.Y[train_size:]
        #if local_rank==0:
        #    logging.info('data_transform_list:%s'%transform_list)
        flip_parts = ([1, 17], [2, 16], [3, 15], [4, 14], [5, 13], [6, 12],
                      [7, 11], [8, 10], [18, 27], [19, 26], [20, 25], [21, 24],
                      [22, 23], [32, 36], [33, 35], [37, 46], [38, 45],
                      [39, 44], [40, 43], [41, 48], [42, 47], [49,
                                                               55], [50, 54],
                      [51, 53], [62, 64], [61, 65], [68, 66], [59,
                                                               57], [60, 56])
        self.flip_order = np.arange(self.num_kps)
        for pair in flip_parts:
            self.flip_order[pair[1] - 1] = pair[0] - 1
            self.flip_order[pair[0] - 1] = pair[1] - 1
        logging.info('len:%d' % len(self.X))
        print('!!!len:%d' % len(self.X))
コード例 #8
0
ファイル: utils.py プロジェクト: xysong1201/icpr2020dfdc
def get_transformer(face_policy: str, patch_size: int, net_normalizer: transforms.Normalize, train: bool):
    # Transformers and traindb
    if face_policy == 'scale':
        # The loader crops the face isotropically then scales to a square of size patch_size_load
        loading_transformations = [
            A.PadIfNeeded(min_height=patch_size, min_width=patch_size,
                          border_mode=cv2.BORDER_CONSTANT, value=0,always_apply=True),
            A.Resize(height=patch_size,width=patch_size,always_apply=True),
        ]
        if train:
            downsample_train_transformations = [
                A.Downscale(scale_max=0.5, scale_min=0.5, p=0.5),  # replaces scaled dataset
            ]
        else:
            downsample_train_transformations = []
    elif face_policy == 'tight':
        # The loader crops the face tightly without any scaling
        loading_transformations = [
            A.LongestMaxSize(max_size=patch_size, always_apply=True),
            A.PadIfNeeded(min_height=patch_size, min_width=patch_size,
                          border_mode=cv2.BORDER_CONSTANT, value=0,always_apply=True),
        ]
        if train:
            downsample_train_transformations = [
                A.Downscale(scale_max=0.5, scale_min=0.5, p=0.5),  # replaces scaled dataset
            ]
        else:
            downsample_train_transformations = []
    else:
        raise ValueError('Unknown value for face_policy: {}'.format(face_policy))

    if train:
        aug_transformations = [
            A.Compose([
                A.HorizontalFlip(),
                A.OneOf([
                    A.RandomBrightnessContrast(),
                    A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=30, val_shift_limit=20),
                ]),
                A.OneOf([
                    A.ISONoise(),
                    A.IAAAdditiveGaussianNoise(scale=(0.01 * 255, 0.03 * 255)),
                ]),
                A.Downscale(scale_min=0.7, scale_max=0.9, interpolation=cv2.INTER_LINEAR),
                A.ImageCompression(quality_lower=50, quality_upper=99),
            ], )
        ]
    else:
        aug_transformations = []

    # Common final transformations
    final_transformations = [
        A.Normalize(mean=net_normalizer.mean, std=net_normalizer.std, ),
        ToTensorV2(),
    ]
    transf = A.Compose(
        loading_transformations + downsample_train_transformations + aug_transformations + final_transformations)
    return transf
コード例 #9
0
def get_obliterate_augs():
    """
    Get the augmentation that can obliterate the hidden signal.
    This is used as augmentation to create negative sample from positive one.
    :return:
    """
    return A.OneOf(
        [
            A.ImageCompression(quality_lower=70, quality_upper=95, p=1),
            A.Downscale(p=1),
            A.GaussianBlur(blur_limit=(5, 9), p=1),
        ],
        p=1,
    )
コード例 #10
0
def get_train_transform(img_size):
    return A.Compose(
        [
            A.Resize(height=img_size, width=img_size, p=1),
            A.RandomSizedBBoxSafeCrop(
                img_size, img_size, interpolation=1, p=0.33
            ),
            A.Flip(),
            A.ShiftScaleRotate(
                shift_limit=0.05,
                scale_limit=0.1,
                rotate_limit=10,
                interpolation=1,
                border_mode=0,
                value=0,
                p=0.5,
            ),
            A.OneOf(
                [
                    A.Blur(blur_limit=(1, 3), p=0.33),
                    A.MedianBlur(blur_limit=3, p=0.33),
                    A.ImageCompression(quality_lower=50, p=0.33),
                ],
                p=0.33,
            ),
            A.OneOf(
                [
                    A.RandomGamma(gamma_limit=(90, 110), p=0.2),
                    A.RandomBrightnessContrast(brightness_limit=0.2, p=0.4),
                    A.HueSaturationValue(
                        hue_shift_limit=25,
                        sat_shift_limit=25,
                        val_shift_limit=30,
                        p=0.5,
                    ),
                ],
                p=0.4,
            ),
            A.CLAHE(clip_limit=2, p=0.2),
            A.Normalize(always_apply=True, p=1.0),
            ToTensorV2(p=1.0),
        ],
        bbox_params=A.BboxParams(
            format="pascal_voc",
            min_area=64,
            min_visibility=0.1,
            label_fields=["labels"],
        ),
    )
コード例 #11
0
    def setup_augmentors(self, augmentations):
        self.augmentors = []
        for aug_name, aug_config in augmentations.items():
            aug = None

            def get_albu(aug):
                return albu.Compose(aug)

            if aug_name == 'image_compression':
                aug = get_albu([
                    albu.ImageCompression(
                        quality_lower=aug_config.get('quality_lower', 90),
                        quality_upper=aug_config.get('quality_upper'),
                        p=aug_config.get('probabilty', 0.5))
                ])
            elif aug_name == 'posterize':
                aug = get_albu([
                    albu.Posterize(num_bits=aug_config.get('num_bits', 4),
                                   p=aug_config.get('probability', 0.5))
                ])
            elif aug_name == 'blur':
                aug = get_albu([
                    albu.Blur(blur_limit=aug_config.get('blur_limit', 7),
                              p=aug_config.get('probabilty', 0.5))
                ])
            elif aug_name == 'median_blur':
                aug = get_albu([
                    albu.MedianBlur(blur_limit=aug_config.get('blur_limit', 7),
                                    p=aug_config.get('probabilty', 0.5))
                ])
            elif aug_name == 'iso_noise':
                aug = get_albu([
                    albu.ISONoise(
                        color_shift=(aug_config.get('min_color_shift', 0.01),
                                     aug_config.get('max_color_shift', 0.05)),
                        intensity=(aug_config.get('min_intensity', 0.1),
                                   aug_config.get('min_intensity', 0.5)),
                        p=aug_config.get('probabilty', 0.5))
                ])
            if not aug:
                continue
            aug.name, aug.p, aug.base = aug_name, aug_config[
                'probability'], self

            self.augmentors.append(aug)

        return
コード例 #12
0
def aug_medium(prob=1):
    return aug.Compose([
        aug.HorizontalFlip(p=.5),
        aug.OneOf([
            aug.CLAHE(clip_limit=2, p=.5),
            aug.IAASharpen(p=.25),
            ], p=0.35),
        aug.RandomBrightnessContrast(p=.7),
        aug.OneOf([
            aug.GaussNoise(p=.35),
            aug.ISONoise(p=.7),
            aug.ImageCompression(quality_lower=70, quality_upper=100, p=.7)
            ], p=.6),
        aug.RGBShift(p=.5),
        aug.HueSaturationValue(hue_shift_limit=8, sat_shift_limit=12, val_shift_limit=8, p=.5),
        aug.ToGray(p=.3)
    ], p=prob)
コード例 #13
0
def hard_transforms(border_reflect=2):
    result = [
        albu.HorizontalFlip(p=0.5),
        albu.VerticalFlip(p=0.5),
        albu.ShiftScaleRotate(shift_limit=0.1,
                              scale_limit=0.1,
                              rotate_limit=15,
                              border_mode=border_reflect,
                              p=0.5),
        albu.IAAPerspective(scale=(0.02, 0.05), p=0.3),
        albu.RandomBrightnessContrast(brightness_limit=0.2,
                                      contrast_limit=0.2,
                                      p=0.3),
        albu.RandomGamma(gamma_limit=(85, 115), p=0.3),
        albu.HueSaturationValue(p=0.3),
        albu.ImageCompression(quality_lower=80, p=0.5),
    ]

    return result
コード例 #14
0
def get_transform(img_size: int, darknet_pretrained: bool = False):
    """Initializes and returns data transformation pipeline

    Args:
        img_size (int): image size
        darknet_pretrained (bool): if you use a pre-trained darknet model, you need to disable image normalization

    """

    normalize = albu.Normalize(p=1)
    if darknet_pretrained:
        normalize = albu.Normalize(p=0)

    train_transform = albu.Compose(
        [
            albu.RandomResizedCrop(
                scale=(0.9, 1.0),
                height=img_size,
                width=img_size,
                p=1,
            ),
            albu.ShiftScaleRotate(
                border_mode=cv2.BORDER_CONSTANT,
                rotate_limit=10,
                scale_limit=0,
                p=0.5,
                mask_value=255,
            ),
            albu.ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
            normalize,
        ],
        bbox_params=albu.BboxParams(format="pascal_voc",
                                    label_fields=["category_id"]),
    )

    test_transform = albu.Compose(
        [albu.Resize(height=img_size, width=img_size, p=1), normalize],
        bbox_params=albu.BboxParams(format="pascal_voc",
                                    label_fields=["category_id"]),
    )

    return train_transform, test_transform
コード例 #15
0
def hard_transforms():
    result = [
        # Random shifts, stretches and turns with a 50% probability
        albu.ShiftScaleRotate(shift_limit=0.1,
                              scale_limit=0.1,
                              rotate_limit=15,
                              border_mode=BORDER_REFLECT,
                              p=0.5),
        albu.IAAPerspective(scale=(0.02, 0.05), p=0.3),
        # Random brightness / contrast with a 30% probability
        albu.RandomBrightnessContrast(brightness_limit=0.2,
                                      contrast_limit=0.2,
                                      p=0.3),
        # Random gamma changes with a 30% probability
        albu.RandomGamma(gamma_limit=(85, 115), p=0.3),
        # Randomly changes the hue, saturation, and color value of the input image
        albu.HueSaturationValue(p=0.3),
        albu.ImageCompression(quality_lower=80),
    ]

    return result
コード例 #16
0
    def __init__(self):
        self.transform = None
        try:
            import albumentations as A

            self.transform = A.Compose([
                A.Blur(p=0.01),
                A.MedianBlur(p=0.01),
                A.ToGray(p=0.01),
                A.CLAHE(p=0.01),
                A.RandomBrightnessContrast(p=0.0),
                A.RandomGamma(p=0.0),
                A.ImageCompression(quality_lower=75, p=0.0)
            ],
                                       bbox_params=A.BboxParams(
                                           format='pascal_voc',
                                           label_fields=['class_labels']))
        except ImportError:  # package not installed, skip
            pass
        except Exception as e:
            print('albumentations: ' + f'{e}')
コード例 #17
0
def get_image_augmentation():
    """ Augmentations just for input and output images (not for masks) """
    image_transform = [
        albu.OneOf([
          albu.Blur(p=0.2, blur_limit=(3, 5)),
          albu.GaussNoise(p=0.2, var_limit=(10.0, 50.0)),
          albu.ISONoise(p=0.2, intensity=(0.1, 0.5), color_shift=(0.01, 0.05)),
          albu.ImageCompression(p=0.2, quality_lower=90, quality_upper=100, compression_type=0),
          albu.MultiplicativeNoise(p=0.2, multiplier=(0.9, 1.1), per_channel=True, elementwise=True),
        ], p=1),
        albu.OneOf([
          albu.HueSaturationValue(p=0.2, hue_shift_limit=(-10, 10), sat_shift_limit=(-10, 10), val_shift_limit=(-10, 10)),
          albu.RandomBrightness(p=0.3, limit=(-0.1, 0.1)),
          albu.RandomGamma(p=0.3, gamma_limit=(80, 100), eps=1e-07),
          albu.ToGray(p=0.1),
          albu.ToSepia(p=0.1),
        ], p=1)
    ]
    return albu.Compose(image_transform, additional_targets={
        'image1': 'image',
        'image2': 'image'
    })
コード例 #18
0
wandb.init(project='inception_v3', group=wandb.util.generate_id())
wandb.config.width_size = width_size
wandb.config.aspect_rate = 1
wandb.config.batch_size = batch_size
wandb.config.accumulation_step = accumulation_step

shutil.rmtree('tensorboard_runs', ignore_errors=True)
writer = SummaryWriter(log_dir='tensorboard_runs',
                       filename_suffix=str(time.time()))

ranzcr_df = pd.read_csv('train_folds.csv')
ranzcr_train_df = ranzcr_df[ranzcr_df['fold'] != 1]

chestx_df = pd.read_csv('chestx_pseudolabeled_data_lazy_balancing.csv')
train_image_transforms = alb.Compose([
    alb.ImageCompression(quality_lower=65, p=0.5),
    alb.HorizontalFlip(p=0.5),
    alb.CLAHE(p=0.5),
    alb.OneOf([
        alb.GridDistortion(num_steps=8, distort_limit=0.5, p=1.0),
        alb.OpticalDistortion(
            distort_limit=0.5,
            shift_limit=0.5,
            p=1.0,
        ),
        alb.ElasticTransform(alpha=3, p=1.0)
    ],
              p=0.7),
    alb.RandomResizedCrop(height=width_size,
                          width=width_size,
                          scale=(0.8, 1.2),
コード例 #19
0
parser.add_argument('--verbose_eval', default=50, type=int)
parser.add_argument('--max_size', default=300, type=int)
parser.add_argument('--num_classes', default=1049, type=int)
parser.add_argument('--resume', default=None, type=str)
parser.add_argument('--depth', default=0, type=int)
args = parser.parse_args()

scaler = GradScaler()
writer = SummaryWriter()
fixed_seed(42)
device = 'cuda'

transforms_train = A.Compose([
    A.HorizontalFlip(p=0.2),
    A.ImageCompression(
        quality_lower=99, 
        quality_upper=100),
    A.ShiftScaleRotate(
        shift_limit=0.2, 
        scale_limit=0.2, 
        rotate_limit=10, 
        border_mode=0, p=0.5),
    A.ColorJitter(0.2, 0.2, 0.2, 0.2),
    A.Resize(args.max_size, args.max_size),
    A.OneOf([
        A.RandomResizedCrop(args.max_size, args.max_size),
        A.Cutout(
            max_h_size=int(args.max_size*0.4), 
            max_w_size=int(args.max_size*0.4),
            num_holes=1,
            p=0.3),
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(border_mode=cv2.BORDER_CONSTANT,
                              rotate_limit=10,
                              scale_limit=0,
                              p=0.5,
                              mask_value=ignore_index),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
        albu.GaussNoise(p=0.5),
        albu.Blur(p=0.5),
        albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
        albu.OneOf([albu.HueSaturationValue(p=0.5),
                    albu.RGBShift(p=0.5)],
                   p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(min_height=1024,
                         min_width=2048,
コード例 #21
0
def train_function(gpu, world_size, node_rank, gpus):
    import torch.multiprocessing
    torch.multiprocessing.set_sharing_strategy('file_system')

    torch.manual_seed(25)
    np.random.seed(25)

    rank = node_rank * gpus + gpu
    dist.init_process_group(
        backend='nccl',
        init_method='env://',
        world_size=world_size,
        rank=rank
    )

    width_size = 512
    batch_size = 32
    accumulation_step = 5
    device = torch.device("cuda:{}".format(gpu) if torch.cuda.is_available() else "cpu")

    if rank == 0:
        wandb.init(project='inception_v3', group=wandb.util.generate_id())
        wandb.config.width_size = width_size
        wandb.config.aspect_rate = 1
        wandb.config.batch_size = batch_size
        wandb.config.accumulation_step = accumulation_step

        shutil.rmtree('tensorboard_runs', ignore_errors=True)
        writer = SummaryWriter(log_dir='tensorboard_runs', filename_suffix=str(time.time()))

    ranzcr_df = pd.read_csv('train_folds.csv')
    ranzcr_train_df = ranzcr_df[ranzcr_df['fold'] != 1]

    chestx_df = pd.read_csv('chestx_pseudolabeled_data_lazy_balancing.csv')
    train_image_transforms = alb.Compose([
        alb.ImageCompression(quality_lower=65, p=0.5),
        alb.HorizontalFlip(p=0.5),
        alb.CLAHE(p=0.5),
        alb.OneOf([
            alb.GridDistortion(
                num_steps=8,
                distort_limit=0.5,
                p=1.0
            ),
            alb.OpticalDistortion(
                distort_limit=0.5,
                shift_limit=0.5,
                p=1.0,
            ),
            alb.ElasticTransform(alpha=3, p=1.0)],
            p=0.7
        ),
        alb.RandomResizedCrop(
            height=width_size,
            width=width_size,
            scale=(0.8, 1.2),
            p=0.7
        ),
        alb.RGBShift(p=0.5),
        alb.RandomSunFlare(p=0.5),
        alb.RandomFog(p=0.5),
        alb.RandomBrightnessContrast(p=0.5),
        alb.HueSaturationValue(
            hue_shift_limit=20,
            sat_shift_limit=20,
            val_shift_limit=20,
            p=0.5
        ),
        alb.ShiftScaleRotate(shift_limit=0.025, scale_limit=0.1, rotate_limit=20, p=0.5),
        alb.CoarseDropout(
            max_holes=12,
            min_holes=6,
            max_height=int(width_size / 6),
            max_width=int(width_size / 6),
            min_height=int(width_size / 6),
            min_width=int(width_size / 20),
            p=0.5
        ),
        alb.IAAAdditiveGaussianNoise(loc=0, scale=(2.5500000000000003, 12.75), per_channel=False, p=0.5),
        alb.IAAAffine(scale=1.0, translate_percent=None, translate_px=None, rotate=0.0, shear=0.0, order=1, cval=0,
                      mode='reflect', p=0.5),
        alb.IAAAffine(rotate=90., p=0.5),
        alb.IAAAffine(rotate=180., p=0.5),
        alb.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ToTensorV2()
    ])
    train_set = NoisyStudentDataset(ranzcr_train_df, chestx_df, train_image_transforms,
                                    '../ranzcr/train', '../data', width_size=width_size)
    train_sampler = DistributedSampler(train_set, num_replicas=world_size, rank=rank, shuffle=True)
    train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=False, num_workers=4, sampler=train_sampler)

    ranzcr_valid_df = ranzcr_df[ranzcr_df['fold'] == 1]
    valid_image_transforms = alb.Compose([
        alb.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ToTensorV2()
    ])
    valid_set = ImageDataset(ranzcr_valid_df, valid_image_transforms, '../ranzcr/train', width_size=width_size)
    valid_loader = DataLoader(valid_set, batch_size=batch_size, num_workers=4, pin_memory=False, drop_last=False)

    # ranzcr_valid_df = ranzcr_df[ranzcr_df['fold'] == 1]
    # valid_image_transforms = alb.Compose([
    #     alb.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    #     ToTensorV2()
    # ])
    # valid_set = ImageDataset(ranzcr_valid_df, valid_image_transforms, '../ranzcr/train', width_size=width_size)
    # valid_sampler = DistributedSampler(valid_set, num_replicas=world_size, rank=rank)
    # valid_loader = DataLoader(valid_set, batch_size=batch_size, num_workers=4, sampler=valid_sampler)

    checkpoints_dir_name = 'inception_v3_noisy_student_{}'.format(width_size)
    os.makedirs(checkpoints_dir_name, exist_ok=True)

    # model = EfficientNetNoisyStudent(11, pretrained_backbone=True,
    #                                  mixed_precision=True, model_name='tf_efficientnet_b7_ns')
    model = Inception(11, pretrained_backbone=True, mixed_precision=False, model_name='inception_v3')
    model = SyncBatchNorm.convert_sync_batchnorm(model)
    model.to(device)
    model = DistributedDataParallel(model, device_ids=[gpu])

    # class_weights = [354.625, 23.73913043478261, 2.777105767812362, 110.32608695652173,
    #                  52.679245283018865, 9.152656621728786, 4.7851333032083145,
    #                  8.437891632878731, 2.4620064899945917, 0.4034751151063363, 31.534942820838626]
    class_names = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal',
                   'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal',
                   'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
    scaler = GradScaler()
    criterion = torch.nn.BCEWithLogitsLoss()

    lr_start = 1e-4
    lr_end = 1e-6
    weight_decay = 0
    epoch_num = 20
    if rank == 0:
        wandb.config.model_name = checkpoints_dir_name
        wandb.config.lr_start = lr_start
        wandb.config.lr_end = lr_end
        wandb.config.weight_decay = weight_decay
        wandb.config.epoch_num = epoch_num
        wandb.config.optimizer = 'adam'
        wandb.config.scheduler = 'CosineAnnealingLR'
        wandb.config.is_loss_weights = 'no'

    optimizer = Adam(model.parameters(), lr=lr_start, weight_decay=weight_decay)
    scheduler = CosineAnnealingLR(optimizer, T_max=epoch_num, eta_min=lr_end, last_epoch=-1)

    max_val_auc = 0

    for epoch in range(epoch_num):
        train_loss, train_avg_auc, train_auc, train_rocs, train_data_pr, train_duration = one_epoch_train(
            model, train_loader, optimizer, criterion, device, scaler,
            iters_to_accumulate=accumulation_step, clip_grads=False)
        scheduler.step()

        if rank == 0:
            val_loss, val_avg_auc, val_auc, val_rocs, val_data_pr, val_duration = eval_model(
                model, valid_loader, device, criterion, scaler)

            wandb.log({'train_loss': train_loss, 'val_loss': val_loss,
                       'train_auc': train_avg_auc, 'val_auc': val_avg_auc, 'epoch': epoch})
            for class_name, auc1, auc2 in zip(class_names, train_auc, val_auc):
                wandb.log({'{} train auc'.format(class_name): auc1,
                           '{} val auc'.format(class_name): auc2, 'epoch': epoch})

            if val_avg_auc > max_val_auc:
                max_val_auc = val_avg_auc
                wandb.run.summary["best_accuracy"] = val_avg_auc

            print('EPOCH %d:\tTRAIN [duration %.3f sec, loss: %.3f, avg auc: %.3f]\t\t'
                  'VAL [duration %.3f sec, loss: %.3f, avg auc: %.3f]\tCurrent time %s' %
                  (epoch + 1, train_duration, train_loss, train_avg_auc,
                   val_duration, val_loss, val_avg_auc, str(datetime.now(timezone('Europe/Moscow')))))

            torch.save(model.module.state_dict(),
                       os.path.join(checkpoints_dir_name, '{}_epoch{}_val_auc{}_loss{}_train_auc{}_loss{}.pth'.format(
                           checkpoints_dir_name, epoch + 1, round(val_avg_auc, 3), round(val_loss, 3),
                           round(train_avg_auc, 3), round(train_loss, 3))))
    if rank == 0:
        wandb.finish()
コード例 #22
0
def load_train_transform(transform_type, patch_size=512):
    if transform_type == 'basic':
        transform = A.Compose([
            A.RandomRotate90(p=0.75),
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.PadIfNeeded(patch_size, patch_size)])

    elif transform_type == 'light':
        transform = A.Compose([
            A.RandomRotate90(p=0.75),
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.Rotate(limit=90, interpolation=1, border_mode=0, value=0, mask_value=0, p=0.25),

            A.HueSaturationValue(
                hue_shift_limit=10,
                sat_shift_limit=10,
                val_shift_limit=0,
                p=0.5),

            A.OneOf([
                A.RandomBrightnessContrast(brightness_limit=0.15, contrast_limit=0.0, p=1.0),
                A.RandomBrightnessContrast(brightness_limit=0.0, contrast_limit=0.15, p=1.0),
                A.RandomGamma(p=.0)], p=1.0),

            A.PadIfNeeded(patch_size, patch_size)])

    elif transform_type == 'moderate':
        transform = A.Compose([
            A.RandomRotate90(p=0.75),
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.Rotate(limit=360, interpolation=1, border_mode=0, value=0, mask_value=0, p=0.25),

            A.transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2, p=0.1),
            A.CoarseDropout(max_holes=12, max_height=12, max_width=12, fill_value=0, p=0.25),
            A.RandomResizedCrop(patch_size, patch_size, scale=(0.5, 1.5), ratio=(0.5, 1.5), interpolation=1, p=0.5),
            A.RGBShift(r_shift_limit=20, g_shift_limit=20, b_shift_limit=20, p=0.5),

            A.HueSaturationValue(
                hue_shift_limit=20,
                sat_shift_limit=20,
                val_shift_limit=5,
                p=0.5),

            A.OneOf([
                A.RandomBrightnessContrast(brightness_limit=0.4, contrast_limit=0.0, p=0.75),
                A.RandomBrightnessContrast(brightness_limit=0.0, contrast_limit=0.2, p=0.75),
                A.RandomGamma(gamma_limit=(75, 125), p=0.5)], p=1.0),

            A.OneOf([
                A.Blur(blur_limit=1, p=0.75),
                A.CLAHE(clip_limit=2.0, tile_grid_size=(8, 8), p=0.75),
                A.IAASharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=0.75),
                A.ImageCompression(quality_lower=60, quality_upper=100, compression_type=0, p=0.75)], p=1.0),

            A.PadIfNeeded(patch_size, patch_size)])

    elif transform_type == 'medium':
        transform = A.Compose([
            A.RandomRotate90(p=0.75),
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.Rotate(limit=90, interpolation=1, border_mode=0, value=0, mask_value=0, p=0.25),

            A.HueSaturationValue(
                hue_shift_limit=10,
                sat_shift_limit=10,
                val_shift_limit=0,
                p=0.5),

            A.OneOf([
                A.RandomBrightnessContrast(brightness_limit=0.15, contrast_limit=0.0, p=1.0),
                A.RandomBrightnessContrast(brightness_limit=0.0, contrast_limit=0.15, p=1.0),
                A.RandomGamma(p=.0)], p=1.0),

            A.OneOf([
                A.ElasticTransform(
                    alpha=200,
                    sigma=20,
                    alpha_affine=20,
                    interpolation=1,
                    border_mode=0,
                    value=0,
                    mask_value=0,
                    p=1.0),
                A.GridDistortion(
                    num_steps=10,
                    distort_limit=0.3,
                    interpolation=1,
                    border_mode=0,
                    value=0,
                    mask_value=0,
                    p=1.0)]),

            A.PadIfNeeded(patch_size, patch_size)])

    else:
        transform = A.Compose([A.PadIfNeeded(patch_size, patch_size)])

    return transform
コード例 #23
0
def get_config(runner,
               raw_uri,
               processed_uri,
               root_uri,
               test=False,
               external_model=False,
               external_loss=False,
               augment=False):
    debug = False
    train_scene_info = get_scene_info(join(processed_uri, 'train-scenes.csv'))
    val_scene_info = get_scene_info(join(processed_uri, 'val-scenes.csv'))
    log_tensorboard = True
    run_tensorboard = True
    class_config = ClassConfig(names=['no_building', 'building'])

    if test:
        debug = True
        train_scene_info = train_scene_info[0:1]
        val_scene_info = val_scene_info[0:1]

    def make_scene(scene_info):
        (raster_uri, label_uri) = scene_info
        raster_uri = join(raw_uri, raster_uri)
        label_uri = join(processed_uri, label_uri)
        aoi_uri = join(raw_uri, aoi_path)

        if test:
            crop_uri = join(processed_uri, 'crops',
                            os.path.basename(raster_uri))
            label_crop_uri = join(processed_uri, 'crops',
                                  os.path.basename(label_uri))

            save_image_crop(raster_uri,
                            crop_uri,
                            label_uri=label_uri,
                            label_crop_uri=label_crop_uri,
                            size=600,
                            min_features=20,
                            class_config=class_config)
            raster_uri = crop_uri
            label_uri = label_crop_uri

        id = os.path.splitext(os.path.basename(raster_uri))[0]
        raster_source = RasterioSourceConfig(channel_order=[0, 1, 2],
                                             uris=[raster_uri])
        label_source = ChipClassificationLabelSourceConfig(
            vector_source=GeoJSONVectorSourceConfig(uri=label_uri,
                                                    default_class_id=1,
                                                    ignore_crs_field=True),
            ioa_thresh=0.5,
            use_intersection_over_cell=False,
            pick_min_class_id=False,
            background_class_id=0,
            infer_cells=True)

        return SceneConfig(id=id,
                           raster_source=raster_source,
                           label_source=label_source,
                           aoi_uris=[aoi_uri])

    chip_sz = 200
    train_scenes = [make_scene(info) for info in train_scene_info]
    val_scenes = [make_scene(info) for info in val_scene_info]
    dataset = DatasetConfig(class_config=class_config,
                            train_scenes=train_scenes,
                            validation_scenes=val_scenes)

    if external_model:
        model = ClassificationModelConfig(external_def=ExternalModuleConfig(
            github_repo='lukemelas/EfficientNet-PyTorch',
            # uri='s3://raster-vision-ahassan/models/EfficientNet-PyTorch.zip',
            name='efficient_net',
            entrypoint='efficientnet_b0',
            force_reload=False,
            entrypoint_kwargs={
                'num_classes': len(class_config.names),
                'pretrained': 'imagenet'
            }))
    else:
        model = ClassificationModelConfig(backbone=Backbone.resnet50)

    if external_loss:
        external_loss_def = ExternalModuleConfig(
            github_repo='AdeelH/pytorch-multi-class-focal-loss',
            name='focal_loss',
            entrypoint='focal_loss',
            force_reload=False,
            entrypoint_kwargs={
                'alpha': [.75, .25],
                'gamma': 2
            })
    else:
        external_loss_def = None

    solver = SolverConfig(lr=1e-4,
                          num_epochs=20,
                          test_num_epochs=4,
                          batch_sz=32,
                          one_cycle=True,
                          external_loss_def=external_loss_def)

    if augment:
        mu = np.array((0.485, 0.456, 0.406))
        std = np.array((0.229, 0.224, 0.225))

        aug_transform = A.Compose([
            A.Flip(),
            A.Transpose(),
            A.RandomRotate90(),
            A.ShiftScaleRotate(),
            A.OneOf([
                A.ChannelShuffle(),
                A.CLAHE(),
                A.FancyPCA(),
                A.HueSaturationValue(),
                A.RGBShift(),
                A.ToGray(),
                A.ToSepia(),
            ]),
            A.OneOf([
                A.RandomBrightness(),
                A.RandomGamma(),
            ]),
            A.OneOf([
                A.GaussNoise(),
                A.ISONoise(),
                A.RandomFog(),
            ]),
            A.OneOf([
                A.Blur(),
                A.MotionBlur(),
                A.ImageCompression(),
                A.Downscale(),
            ]),
            A.CoarseDropout(max_height=32, max_width=32, max_holes=5)
        ])
        base_transform = A.Normalize(mean=mu.tolist(), std=std.tolist())
        plot_transform = A.Normalize(mean=(-mu / std).tolist(),
                                     std=(1 / std).tolist(),
                                     max_pixel_value=1.)
    else:
        aug_transform = None
        base_transform = None
        plot_transform = None

    backend = PyTorchChipClassificationConfig(
        model=model,
        solver=solver,
        log_tensorboard=log_tensorboard,
        run_tensorboard=run_tensorboard,
        test_mode=test,
        base_transform=A.to_dict(base_transform),
        aug_transform=A.to_dict(aug_transform),
        plot_options=PlotOptions(transform=A.to_dict(plot_transform)))

    config = ChipClassificationConfig(root_uri=root_uri,
                                      dataset=dataset,
                                      backend=backend,
                                      train_chip_sz=chip_sz,
                                      predict_chip_sz=chip_sz)
    return config
コード例 #24
0
def get_augmentations(name, img_size):

    if name == 'training_none':
        aug = A.Compose([
            A.Resize(img_size, img_size),
            A.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
            ),
            ToTensorV2()
        ])
    elif name == 'training_dropout':
        aug = A.Compose([
            A.Resize(img_size, img_size),
            A.CoarseDropout(min_height=int(img_size * 0.05),
                            min_width=int(img_size * 0.05),
                            max_height=int(img_size * 0.1),
                            max_width=int(img_size * 0.1),
                            min_holes=1,
                            max_holes=20,
                            p=0),
            A.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
            ),
            ToTensorV2()
        ])
    elif name == 'training_1':
        aug = A.Compose([
            A.RandomResizedCrop(img_size, img_size, scale=(0.9, 1), p=1),
            A.ShiftScaleRotate(p=0.5),
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(brightness_limit=0.2,
                                       contrast_limit=0.2,
                                       p=0.7),
            A.HueSaturationValue(hue_shift_limit=10,
                                 val_shift_limit=10,
                                 sat_shift_limit=10,
                                 p=0.7),
            A.CLAHE(clip_limit=(1, 4), p=0.5),
            A.OneOf([
                A.GaussNoise(var_limit=[10, 50]),
                A.GaussianBlur(),
                A.MotionBlur(),
                A.MedianBlur(),
            ],
                    p=0.3),
            A.OneOf([
                A.OpticalDistortion(distort_limit=1.0),
                A.GridDistortion(num_steps=5, distort_limit=1.),
                A.ElasticTransform(alpha=3),
            ],
                    p=0.3),
            A.OneOf([
                A.ImageCompression(),
                A.Downscale(scale_min=0.1, scale_max=0.15),
            ],
                    p=0.2),
            A.IAAPiecewiseAffine(p=0.2),
            A.IAASharpen(p=0.2),
            A.CoarseDropout(max_height=int(img_size * 0.1),
                            max_width=int(img_size * 0.1),
                            min_holes=5,
                            max_holes=10,
                            p=0.5),
            A.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
            ),
            ToTensorV2()
        ])
    elif name == 'training_2':
        aug = A.Compose([
            A.RandomResizedCrop(img_size, img_size, scale=(0.9, 1), p=1),
            A.ShiftScaleRotate(p=0.5),
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(brightness_limit=0.2,
                                       contrast_limit=0.2,
                                       p=0.7),
            A.HueSaturationValue(hue_shift_limit=10,
                                 val_shift_limit=10,
                                 sat_shift_limit=10,
                                 p=0.7),
            A.CLAHE(clip_limit=(1, 4), p=0.5),
            A.OneOf([
                A.GaussNoise(var_limit=[10, 50]),
                A.GaussianBlur(),
                A.MotionBlur(),
                A.MedianBlur(),
            ],
                    p=0.3),
            A.OneOf([
                A.OpticalDistortion(distort_limit=1.0),
                A.GridDistortion(num_steps=5, distort_limit=1.),
                A.ElasticTransform(alpha=3),
            ],
                    p=0.3),
            A.OneOf([
                A.ImageCompression(),
                A.Downscale(scale_min=0.1, scale_max=0.15),
            ],
                    p=0.2),
            A.IAAPiecewiseAffine(p=0.2),
            A.IAASharpen(p=0.2),
            A.CoarseDropout(max_height=int(img_size * 0.1),
                            max_width=int(img_size * 0.1),
                            min_holes=5,
                            max_holes=10,
                            p=0.5),
            A.Normalize(),
            ToTensorV2()
        ])
    elif name == 'training_2_bis':
        aug = A.Compose([
            A.RandomResizedCrop(img_size, img_size, scale=(0.9, 1), p=1),
            A.ShiftScaleRotate(rotate_limit=30, p=0.5),
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(brightness_limit=0.2,
                                       contrast_limit=0.2,
                                       p=0.7),
            A.HueSaturationValue(hue_shift_limit=10,
                                 val_shift_limit=10,
                                 sat_shift_limit=10,
                                 p=0.7),
            A.CLAHE(clip_limit=(1, 4), p=0.5),
            A.OneOf([
                A.GaussNoise(var_limit=[10, 50]),
                A.GaussianBlur(),
                A.MotionBlur(),
                A.MedianBlur()
            ],
                    p=0.3),
            #A.OneOf([A.OpticalDistortion(distort_limit=1.0), A.GridDistortion(num_steps=5, distort_limit=1.),
            #         A.ElasticTransform(alpha=3)], p=0.3),
            A.OneOf([
                A.ImageCompression(),
                A.Downscale(scale_min=0.1, scale_max=0.15)
            ],
                    p=0.2),
            #A.IAAPiecewiseAffine(p=0.2),
            A.IAASharpen(p=0.2),
            A.CoarseDropout(max_height=int(img_size * 0.1),
                            max_width=int(img_size * 0.1),
                            min_holes=5,
                            max_holes=10,
                            p=0.5),
            A.Normalize(),
            ToTensorV2()
        ])
    elif name == 'training_3':
        aug = A.Compose([
            A.Rotate(limit=5),
            A.RandomResizedCrop(img_size, img_size, scale=(0.9, 1), p=1),
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(brightness_limit=0.15,
                                       contrast_limit=0.15,
                                       p=0.5),
            A.CoarseDropout(min_height=int(img_size * 0.05),
                            min_width=int(img_size * 0.05),
                            max_height=int(img_size * 0.1),
                            max_width=int(img_size * 0.1),
                            min_holes=1,
                            max_holes=10,
                            p=0.5),
            A.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
            ),
            ToTensorV2()
        ])
    elif name == 'training_4':
        aug = A.Compose([
            A.Rotate(limit=5, p=1),
            A.RandomResizedCrop(img_size, img_size, scale=(0.9, 1), p=1),
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(brightness_limit=(-0.15, +0.25),
                                       contrast_limit=(-0.15, +0.25),
                                       p=1),
            A.CLAHE(clip_limit=(1, 4), p=0.5),
            A.OneOf([
                A.GaussNoise(var_limit=(10, 50)),
                A.GaussianBlur(),
                A.MotionBlur(),
                A.MedianBlur(),
            ],
                    p=1),
            A.IAASharpen(p=0.3),
            A.CoarseDropout(min_height=int(img_size * 0.05),
                            min_width=int(img_size * 0.05),
                            max_height=int(img_size * 0.1),
                            max_width=int(img_size * 0.1),
                            min_holes=1,
                            max_holes=20,
                            p=0),
            A.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225],
            ),
            ToTensorV2()
        ])
    elif name == 'validation':
        aug = A.Compose(
            [A.Resize(img_size, img_size),
             A.Normalize(),
             ToTensorV2()])
    elif name == 'none':
        aug = A.Compose([A.Resize(img_size, img_size)])
    else:
        raise ValueError(f"{name} is not a valid augmentations name")

    return aug
コード例 #25
0
def get_transform_imagenet(use_albu_aug):
    if use_albu_aug:
        train_transform = al.Compose([
            # al.Flip(p=0.5),
            al.Resize(256, 256, interpolation=2),
            al.RandomResizedCrop(224,
                                 224,
                                 scale=(0.08, 1.0),
                                 ratio=(3. / 4., 4. / 3.),
                                 interpolation=2),
            al.HorizontalFlip(),
            al.OneOf(
                [
                    al.OneOf(
                        [
                            al.ShiftScaleRotate(
                                border_mode=cv2.BORDER_CONSTANT,
                                rotate_limit=30),  # , p=0.05),
                            al.OpticalDistortion(
                                border_mode=cv2.BORDER_CONSTANT,
                                distort_limit=5.0,
                                shift_limit=0.1),
                            # , p=0.05),
                            al.GridDistortion(border_mode=cv2.BORDER_CONSTANT
                                              ),  # , p=0.05),
                            al.ElasticTransform(
                                border_mode=cv2.BORDER_CONSTANT,
                                alpha_affine=15),  # , p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.RandomGamma(),  # p=0.05),
                            al.HueSaturationValue(),  # p=0.05),
                            al.RGBShift(),  # p=0.05),
                            al.CLAHE(),  # p=0.05),
                            al.ChannelShuffle(),  # p=0.05),
                            al.InvertImg(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.RandomSnow(),  # p=0.05),
                            al.RandomRain(),  # p=0.05),
                            al.RandomFog(),  # p=0.05),
                            al.RandomSunFlare(num_flare_circles_lower=1,
                                              num_flare_circles_upper=2,
                                              src_radius=110),
                            # p=0.05, ),
                            al.RandomShadow(),  # p=0.05),
                        ],
                        p=0.1),
                    al.RandomBrightnessContrast(p=0.1),
                    al.OneOf(
                        [
                            al.GaussNoise(),  # p=0.05),
                            al.ISONoise(),  # p=0.05),
                            al.MultiplicativeNoise(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.ToGray(),  # p=0.05),
                            al.ToSepia(),  # p=0.05),
                            al.Solarize(),  # p=0.05),
                            al.Equalize(),  # p=0.05),
                            al.Posterize(),  # p=0.05),
                            al.FancyPCA(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            # al.MotionBlur(blur_limit=1),
                            al.Blur(blur_limit=[3, 5]),
                            al.MedianBlur(blur_limit=[3, 5]),
                            al.GaussianBlur(blur_limit=[3, 5]),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.CoarseDropout(),  # p=0.05),
                            al.Cutout(),  # p=0.05),
                            al.GridDropout(),  # p=0.05),
                            al.ChannelDropout(),  # p=0.05),
                            al.RandomGridShuffle(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.Downscale(),  # p=0.1),
                            al.ImageCompression(quality_lower=60),  # , p=0.1),
                        ],
                        p=0.1),
                ],
                p=0.5),
            al.Normalize(),
            ToTensorV2()
        ])
    else:
        train_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
        ])
    test_transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
    ])

    if use_albu_aug:
        train_transform = MultiDataTransformAlbu(train_transform)
    else:
        train_transform = MultiDataTransform(train_transform)

    return train_transform, test_transform
コード例 #26
0
import os
from typing import Tuple, List

import albumentations as a
import cv2
import numpy as np

transform_distort = a.Compose([
    a.ImageCompression(quality_lower=39, quality_upper=40, p=0.4),
    a.MultiplicativeNoise(multiplier=(0.5, 1.5), per_channel=True, p=0.2),
    a.RandomBrightnessContrast(p=0.3),
])

transform_beauty = a.Compose([
    a.RandomBrightnessContrast(p=0.3),
])


def augment_distort(img: np.ndarray):
    transformed = transform_distort(image=img)
    transformed_image = transformed["image"]
    return transformed_image


def augment_beauty(img: np.ndarray):
    transformed = transform_beauty(image=img)
    transformed_image = transformed["image"]
    return transformed_image


def load_altered_dataset_beauty(
コード例 #27
0
def experiment(device, args=None):
    """Train model.

    Args:
        device (str): device to use for training.
        args (dict): experiment arguments.
    """
    if args is None:
        args = dict

    train_config = args["train"]
    train_augmentations = albu.Compose(
        [
            albu.OneOf([
                albu.HueSaturationValue(hue_shift_limit=10,
                                        sat_shift_limit=35,
                                        val_shift_limit=25),
                albu.RandomGamma(),
                albu.CLAHE(),
            ]),
            albu.RandomBrightnessContrast(brightness_limit=[-0.3, 0.3],
                                          contrast_limit=[-0.3, 0.3],
                                          p=0.5),
            albu.OneOf([
                albu.Blur(),
                albu.MotionBlur(),
                albu.GaussNoise(),
                albu.ImageCompression(quality_lower=75)
            ]),
            albu.ShiftScaleRotate(shift_limit=0.0625,
                                  scale_limit=0.15,
                                  rotate_limit=10,
                                  border_mode=0,
                                  p=0.5),
            albu.Resize(300, 300),
            albu.Normalize(),
            ToTensorV2(),
        ],
        bbox_params=albu.BboxParams(
            "albumentations"
        ),  # 'albumentations' because x1, y1, x2, y2 in range [0, 1]
    )
    train_dataset = COCOFileDataset(train_config["annotations"],
                                    train_config["images_dir"],
                                    transforms=train_augmentations)
    train_loader = DataLoader(
        train_dataset,
        batch_size=train_config["batch_size"],
        num_workers=train_config["num_workers"],
        shuffle=True,
        drop_last=True,
    )
    logger.info("Train dataset information:")
    logger.info("\n" + train_dataset.info())

    valid_config = args["validation"]
    valid_augmentations = albu.Compose(
        [
            albu.Resize(300, 300),
            albu.Normalize(),
            ToTensorV2(),
        ],
        bbox_params=albu.BboxParams(
            format="albumentations"
        ),  # 'albumentations' because x1, y1, x2, y2 in range [0, 1]
    )
    valid_dataset = COCOFileDataset(valid_config["annotations"],
                                    valid_config["images_dir"],
                                    transforms=valid_augmentations)
    valid_loader = DataLoader(
        valid_dataset,
        batch_size=valid_config["batch_size"],
        num_workers=valid_config["num_workers"],
        shuffle=False,
        drop_last=False,
    )
    logger.info("Validation dataset information:")
    logger.info("\n" + valid_dataset.info())

    model_config = args["model"]
    num_classes = model_config["num_classes"] + 1  # +1 for background class
    seed_all(42)
    model = SSD300(model_config["backbone"], num_classes)
    model = model.to(device)
    optimizer = optim.AdamW(model.parameters(), lr=1e-3 / 2)
    # optimizer = optim.SGD(model.parameters(), lr=2.6e-3, momentum=0.9, weight_decay=0.0005)
    epoch_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
        optimizer, args["experiment"]["num_epochs"])
    batch_scheduler = None
    criterion = Loss(num_classes)

    experiment_config = args["experiment"]
    num_epochs = experiment_config["num_epochs"]
    for epoch_idx in range(1, num_epochs + 1):
        logger.info(f"Epoch: {epoch_idx}/{num_epochs}")
        train_metrics = train_fn(train_loader,
                                 model,
                                 device,
                                 criterion,
                                 optimizer,
                                 batch_scheduler,
                                 verbose=False)
        logger.info(f"     Train: {train_metrics}")

        # TODO: checkpoints
        valid_metrics = valid_fn(valid_loader,
                                 model,
                                 device,
                                 criterion,
                                 verbose=False)
        logger.info(f"Validation: {valid_metrics}")

        epoch_scheduler.step()

    export_to_onnx(model, torch.randn(1, 3, 300, 300),
                   experiment_config["onnx"])
    logger.info("Exported ONNX model to '{}'".format(
        experiment_config["onnx"]))
コード例 #28
0
ファイル: train_ego.py プロジェクト: xmba15/rail_marking
def train_process(data_path, config):
    def _worker_init_fn_():
        import random
        import numpy as np
        import torch

        random_seed = config.random_seed
        torch.manual_seed(random_seed)
        np.random.seed(random_seed)
        random.seed(random_seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed(random_seed)

    input_size = (config.img_height, config.img_width)

    PAD_VALUE = (0, 0, 0)
    IGNORE_INDEX = 255
    transforms = [
        abm.RandomResizedCrop(
            scale=(0.7, 1),
            ratio=(1.5, 2),
            height=config.img_height,
            width=config.img_width,
            interpolation=cv2.INTER_NEAREST,
            always_apply=True,
        ),
        abm.OneOf([abm.IAAAdditiveGaussianNoise(),
                   abm.GaussNoise()], p=0.5),
        abm.OneOf(
            [
                abm.MedianBlur(blur_limit=3),
                abm.GaussianBlur(blur_limit=3),
                abm.MotionBlur(blur_limit=3),
            ],
            p=0.5,
        ),
        abm.OneOf([
            abm.ShiftScaleRotate(
                rotate_limit=7,
                interpolation=cv2.INTER_NEAREST,
                border_mode=cv2.BORDER_CONSTANT,
                value=PAD_VALUE,
                mask_value=IGNORE_INDEX,
                p=1.0,
            ),
            abm.ElasticTransform(
                interpolation=cv2.INTER_NEAREST,
                border_mode=cv2.BORDER_CONSTANT,
                alpha_affine=30,
                value=PAD_VALUE,
                mask_value=IGNORE_INDEX,
                p=1.0,
            ),
            abm.Perspective(
                scale=(0.05),
                interpolation=cv2.INTER_NEAREST,
                pad_mode=cv2.BORDER_CONSTANT,
                pad_val=PAD_VALUE,
                mask_pad_val=IGNORE_INDEX,
                keep_size=True,
                fit_output=True,
                p=1.0,
            ),
        ]),
        abm.RandomGamma(gamma_limit=(80, 120), p=0.5),
        abm.RandomBrightnessContrast(brightness_limit=(-0.5, 0.5),
                                     contrast_limit=(-0.5, 0.5),
                                     p=0.5),
        abm.HueSaturationValue(hue_shift_limit=20,
                               sat_shift_limit=30,
                               val_shift_limit=20,
                               p=0.5),
        abm.RandomShadow(p=0.5),
        abm.ChannelShuffle(p=0.5),
        abm.ChannelDropout(p=0.5),
        abm.HorizontalFlip(p=0.5),
        abm.ImageCompression(quality_lower=50, p=0.5),
        abm.Cutout(num_holes=100, max_w_size=8, max_h_size=8, p=0.5),
    ]

    data_transform = DataTransformBase(transforms=transforms,
                                       input_size=input_size,
                                       normalize=True)
    train_dataset = EgoRailDataset(data_path=data_path,
                                   phase="train",
                                   transform=data_transform)
    val_dataset = EgoRailDataset(data_path=data_path,
                                 phase="val",
                                 transform=data_transform)

    # train_dataset.weighted_class()
    weighted_values = [8.90560578, 1.53155476]

    train_data_loader = DataLoader(
        train_dataset,
        batch_size=config.batch_size,
        shuffle=True,
        num_workers=config.num_workers,
        drop_last=True,
        worker_init_fn=_worker_init_fn_(),
    )
    val_data_loader = DataLoader(
        val_dataset,
        batch_size=config.batch_size,
        shuffle=False,
        num_workers=config.num_workers,
        drop_last=True,
    )
    data_loaders_dict = {"train": train_data_loader, "val": val_data_loader}
    model = BiSeNetV2(n_classes=config.num_classes)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    criterion = OHEMCELoss(thresh=config.ohem_ce_loss_thresh,
                           weighted_values=weighted_values)

    base_lr_rate = config.lr_rate / (config.batch_size *
                                     config.batch_multiplier)
    base_weight_decay = config.weight_decay * (config.batch_size *
                                               config.batch_multiplier)

    def _lambda_epoch(epoch):
        import math

        max_epoch = config.num_epochs
        return math.pow((1 - epoch * 1.0 / max_epoch), 0.9)

    optimizer = torch.optim.SGD(
        model.parameters(),
        lr=base_lr_rate,
        momentum=config.momentum,
        weight_decay=base_weight_decay,
    )
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=_lambda_epoch)
    trainer = BiSeNetV2Trainer(
        model=model,
        criterion=criterion,
        metric_func=None,
        optimizer=optimizer,
        data_loaders_dict=data_loaders_dict,
        config=config,
        scheduler=scheduler,
        device=device,
    )

    if config.snapshot and os.path.isfile(config.snapshot):
        trainer.resume_checkpoint(config.snapshot)

    with torch.autograd.set_detect_anomaly(True):
        trainer.train()
コード例 #29
0
ファイル: dataset.py プロジェクト: lukas-blecher/LaTeX-OCR
from transformers import PreTrainedTokenizerFast
from tqdm.auto import tqdm


train_transform = alb.Compose(
    [
        alb.Compose(
            [alb.ShiftScaleRotate(shift_limit=0, scale_limit=(-.15, 0), rotate_limit=1, border_mode=0, interpolation=3,
                                  value=[255, 255, 255], p=1),
             alb.GridDistortion(distort_limit=0.1, border_mode=0, interpolation=3, value=[255, 255, 255], p=.5)], p=.15),
        # alb.InvertImg(p=.15),
        alb.RGBShift(r_shift_limit=15, g_shift_limit=15,
                     b_shift_limit=15, p=0.3),
        alb.GaussNoise(10, p=.2),
        alb.RandomBrightnessContrast(.05, (-.2, 0), True, p=0.2),
        alb.ImageCompression(95, p=.3),
        alb.ToGray(always_apply=True),
        alb.Normalize((0.7931, 0.7931, 0.7931), (0.1738, 0.1738, 0.1738)),
        # alb.Sharpen()
        ToTensorV2(),
    ]
)
test_transform = alb.Compose(
    [
        alb.ToGray(always_apply=True),
        alb.Normalize((0.7931, 0.7931, 0.7931), (0.1738, 0.1738, 0.1738)),
        # alb.Sharpen()
        ToTensorV2(),
    ]
)
コード例 #30
0
def make_transform(args):
    base_transform = [
        A.Resize(args.img_size, args.img_size),
        A.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225],
        ),
        ToTensorV2()
    ]

    train_transform = []
    if args.Blur:
        train_transform.append(A.Blur(p=args.Blur))
    if args.Blur:
        train_transform.append(A.ElasticTransform(p=args.Blur))

    if args.CLAHE:
        train_transform.append(
            A.CLAHE(clip_limit=(1, 4), tile_grid_size=(8, 8), p=args.CLAHE))
    if args.RandomBrightnessContrast:
        train_transform.append(
            A.RandomBrightnessContrast(brightness_limit=0.2,
                                       contrast_limit=0.2,
                                       brightness_by_max=True,
                                       p=args.RandomBrightnessContrast))
    if args.HueSaturationValue:
        train_transform.append(
            A.HueSaturationValue(hue_shift_limit=20,
                                 sat_shift_limit=30,
                                 val_shift_limit=20,
                                 p=args.HueSaturationValue))
    if args.RGBShift:
        train_transform.append(
            A.RGBShift(r_shift_limit=20,
                       g_shift_limit=20,
                       b_shift_limit=20,
                       p=args.RGBShift))
    if args.RandomGamma:
        train_transform.append(
            A.RandomGamma(gamma_limit=(80, 120), p=args.RandomGamma))
    if args.HorizontalFlip:
        train_transform.append(A.HorizontalFlip(p=args.HorizontalFlip))

    if args.VerticalFlip:
        train_transform.append(A.VerticalFlip(p=args.VerticalFlip))

    if args.ShiftScaleRotate:
        train_transform.append(
            A.ShiftScaleRotate(shift_limit=0.2,
                               scale_limit=0.2,
                               rotate_limit=10,
                               border_mode=args.ShiftScaleRotateMode,
                               p=args.ShiftScaleRotate))
    if args.GridDistortion:
        train_transform.append(
            A.GridDistortion(num_steps=5,
                             distort_limit=(-0.3, 0.3),
                             p=args.GridDistortion))
    if args.MotionBlur:
        train_transform.append(
            A.MotionBlur(blur_limit=(3, 7), p=args.MotionBlur))
    if args.RandomResizedCrop:
        train_transform.append(
            A.RandomResizedCrop(height=args.img_size,
                                width=args.img_size,
                                scale=(-0.4, 1.0),
                                ratio=(0.75, 1.3333333333333333),
                                p=args.RandomResizedCrop))
    if args.ImageCompression:
        train_transform.append(
            A.ImageCompression(quality_lower=99,
                               quality_upper=100,
                               p=args.ImageCompression))
    train_transform.extend(base_transform)

    train_transform = A.Compose(train_transform)
    test_transform = A.Compose(base_transform)

    return train_transform, test_transform