コード例 #1
0
ファイル: albumentations.py プロジェクト: mrlzla/kaggle_salt
def aug_mega_hardcore(p=.95):
    return Compose([
        OneOf([CLAHE(clip_limit=2),
               IAASharpen(p=.25),
               IAAEmboss(p=.25)],
              p=.35),
        OneOf([
            IAAAdditiveGaussianNoise(p=.3),
            GaussNoise(p=.7),
        ], p=.5),
        RandomRotate90(),
        Flip(),
        Transpose(),
        OneOf([
            MotionBlur(p=.2),
            MedianBlur(blur_limit=3, p=.3),
            Blur(blur_limit=3, p=.5),
        ],
              p=.4),
        OneOf([
            RandomContrast(p=.5),
            RandomBrightness(p=.5),
        ], p=.4),
        ShiftScaleRotate(
            shift_limit=.0, scale_limit=.45, rotate_limit=45, p=.7),
        OneOf([
            OpticalDistortion(p=0.3),
            GridDistortion(p=0.2),
            ElasticTransform(p=.2),
            IAAPerspective(p=.2),
            IAAPiecewiseAffine(p=.3),
        ],
              p=.6),
        HueSaturationValue(p=.5)
    ],
                   p=p)
コード例 #2
0
def read_train_img(images_paths):
    images = []
    gts = []
    for image_path in images_paths:
        gt_path = image_path.replace('images', 'gt')

        image = tifffile.imread(image_path)
        gt = tifffile.imread(gt_path)

        # 数据扩充
        h, w = image.shape[0], image.shape[1]
        aug = Compose([
            VerticalFlip(p=0.5),
            RandomRotate90(p=0.5),
            HorizontalFlip(p=0.5),
            RandomSizedCrop(min_max_height=(128, 512),
                            height=h,
                            width=w,
                            p=0.5)
        ])

        augmented = aug(image=image, mask=gt)
        image = augmented['image']
        gt = augmented['mask']

        # 数据预处理
        image = image / 255.0
        gt_temp = gt.copy()
        gt[gt_temp == 255] = 1
        gt = np.expand_dims(gt, axis=2)
        # gt = np_utils.to_categorical(gt, num_classes=1)

        images.append(image)
        gts.append(gt)

    return np.array(images), np.array(gts)
コード例 #3
0
    def __init__(self, data, img_size=384, aug=True, mode='train'):
        self.data = data
        self.mode = mode
        if mode is 'train':
            self.images = data.ImageId.unique()
            self._aug = Compose([
                Flip(),
                RandomRotate90(),
                ShiftScaleRotate(),
                Normalize(),
                # Resize(256, 256),
                Resize(img_size, img_size),
            ])
        elif mode is 'test' or mode is 'val':
            self.images = data.ImageId.unique()
            self._aug = Compose([
                Normalize(),
                # Resize(256, 256),
                Resize(img_size, img_size),

                # PadIfNeeded(768, 768)
            ])
        else:
            raise RuntimeError()
コード例 #4
0
def get_aug(p=1.0):
    return Compose([
        HorizontalFlip(),
        VerticalFlip(),
        RandomRotate90(),
        ShiftScaleRotate(shift_limit=0.0625,
                         scale_limit=0.2,
                         rotate_limit=15,
                         p=0.9,
                         border_mode=cv2.BORDER_REFLECT),
        OneOf([
            OpticalDistortion(p=0.3),
            GridDistortion(p=.1),
            IAAPiecewiseAffine(p=0.3),
        ],
              p=0.3),
        OneOf([
            HueSaturationValue(10, 15, 10),
            CLAHE(clip_limit=2),
            RandomBrightnessContrast(),
        ],
              p=0.3),
    ],
                   p=p)
コード例 #5
0
def augmentation_hardcore(size_image, p=0.8):
    '''
    Only use for second model
    About albumentation, p in compose mean the prob that all transform in Compose work
    '''
    return Compose([
        Resize(size_image, size_image),
        CenterCrop(height=200, width=200, p=0.5),
        Cutout(),
        RandomShadow(shadow_dimension=3),
        OneOf([
            Flip(),
            VerticalFlip(),
            HorizontalFlip(),
        ], p=0.5),
        OneOf([
            RandomRotate90(),
            Transpose(),
        ], p=0.5),
        OneOf([GaussNoise(), GaussianBlur(blur_limit=9),
               Blur()], p=0.5),
        OneOf([
            HueSaturationValue(
                hue_shift_limit=10, sat_shift_limit=25, val_shift_limit=20),
            RGBShift(),
            RandomBrightness(brightness_limit=0.4),
            RandomContrast(),
            RandomBrightnessContrast(),
        ],
              p=0.5),
        OneOf([ShiftScaleRotate(),
               ElasticTransform(),
               RandomGridShuffle()],
              p=0.5)
    ],
                   p=p)
コード例 #6
0
ファイル: net.py プロジェクト: shaun11524/paper
 def __getitem__(self, idx):
     label1 = int(self.df[idx][1])
     c = str(self.df[idx][0])
     image = cv2.imread(c)
     image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
     image = RandomRotate90()(image=image)['image']
     image = Flip()(image=image)['image']
     image = JpegCompression(quality_lower=9,
                             quality_upper=10)(image=image)['image']
     image = Transpose()(image=image)['image']
     image = Downscale()(image=image)['image']
     image = IAAAdditiveGaussianNoise()(image=image)['image']
     image = Blur(blur_limit=7)(image=image)['image']
     image = ShiftScaleRotate(shift_limit=0.0625,
                              scale_limit=0.2,
                              rotate_limit=45)(image=image)['image']
     image = IAAPiecewiseAffine()(image=image)['image']
     image = RGBShift()(image=image)['image']
     image = RandomBrightnessContrast()(image=image)['image']
     image = HueSaturationValue()(image=image)['image']
     image = transforms.ToPILImage()(image)
     if self.transform:
         image = self.transform(image)
     return image, label1
コード例 #7
0
def create_train_transforms(conf):
    height = conf['crop_height']
    width = conf['crop_width']
    return Compose([
        ShiftScaleRotate(shift_limit=0.2, scale_limit=0, rotate_limit=0),
        OneOf([
            RandomSizedCrop(min_max_height=(int(height * 0.8), int(
                height * 1.2)),
                            w2h_ratio=1.,
                            height=height,
                            width=width,
                            p=0.9),
            RandomCrop(height=height, width=width, p=0.1)
        ],
              p=1),
        Rotate(limit=10, p=0.2, border_mode=cv2.BORDER_CONSTANT, value=0),
        HorizontalFlip(),
        VerticalFlip(),
        RandomRotate90(),
        Transpose(),
        OneOf(
            [RGBShift(), RandomBrightnessContrast(),
             RandomGamma()], p=0.5),
    ])
コード例 #8
0
def create_train_transforms(size):
    return Compose([
        # ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
        GaussNoise(p=0.1),
        GaussianBlur(blur_limit=3, p=0.05),
        HorizontalFlip(),
        RandomRotate90(),
        Resize(height=size[0], width=size[1]),
        PadIfNeeded(min_height=size[0],
                    min_width=size[1],
                    border_mode=cv2.BORDER_CONSTANT),
        OneOf([RandomBrightnessContrast(),
               FancyPCA(),
               HueSaturationValue()],
              p=0.7),
        ToGray(p=0.1),
        ShiftScaleRotate(shift_limit=0.1,
                         scale_limit=0.2,
                         rotate_limit=10,
                         border_mode=cv2.BORDER_CONSTANT,
                         p=0.5),
        Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ToTensorV2()
    ])
コード例 #9
0
    def __init__(
        self,
        image_path='../../data/training/images/',
        groundtruth_path='../../data/training/groundtruth/',
        val_split=0.1,
        additional_images_path='../../additional_data_generation/additional_data/images/',
        additional_masks_path='../../additional_data_generation/additional_data/masks/'
    ):
        training_images = os.listdir(image_path)
        training_truths = os.listdir(groundtruth_path)

        # shuffling the images so to obtain a random train-test split
        zipped = list(zip(training_images, training_truths))
        random.shuffle(zipped)
        training_images, training_truths = zip(*zipped)

        self.images = []
        self.truths = []
        self.validation_images = []
        self.validation_truths = []
        self.additional_images = []
        self.additional_masks = []
        self.treshold = 0.25

        counter = int((val_split) * len(training_images))
        print('Reading images...', flush=True)
        for i, t in tqdm(list(zip(training_images, training_truths))):
            if counter > 0 and val_split != 0.0:
                self.validation_images.append(imread(image_path + i))
                self.validation_truths.append(
                    rgb2gray(imread(groundtruth_path + t)))

            counter -= 1
            self.images.append(imread(image_path + i))
            self.truths.append(rgb2gray(imread(groundtruth_path + t)))
        print('Done!')

        additional_paths = [
            p for p in list(os.listdir(additional_images_path))
            if p.endswith('.png')
        ]
        random.shuffle(additional_paths)
        print('Reading additional data...', flush=True)
        for p in tqdm(additional_paths):
            self.additional_images.append(imread(additional_images_path + p))
            self.additional_masks.append(
                rgb2gray(imread(additional_masks_path + p)))
        print('Done!')

        self.albument_p = .5
        self.albumenters_1 = [
            VerticalFlip(p=self.albument_p),
            HorizontalFlip(p=self.albument_p),
            RandomRotate90(p=self.albument_p),
            ElasticTransform(alpha=1,
                             sigma=50,
                             alpha_affine=50,
                             p=self.albument_p)
        ]

        self.albumenters_2 = [
            RandomContrast(limit=.6, p=self.albument_p),
            HueSaturationValue(hue_shift_limit=20,
                               sat_shift_limit=30,
                               val_shift_limit=20,
                               p=self.albument_p),
            RandomBrightness(limit=0.2, p=self.albument_p)
        ]
コード例 #10
0
ファイル: policy_transform.py プロジェクト: rosaann/scalar_c
def policy_transform(split,
                     policies=None,
                     size=224,
                     per_image_norm=False,
                     mean_std=None,
                     **kwargs):
  means = np.array([127.5, 127.5, 127.5, 127.5])
  stds = np.array([255.0, 255.0, 255.0, 255.0])

  base_aug = Compose([
    RandomRotate90(),
    Flip(),
    Transpose(),
  ])

  if policies is None:
    policies = []

  if isinstance(policies, str):
    with open(policies, 'r') as fid:
      policies = eval(fid.read())
      policies = itertools.chain.from_iterable(policies)

  aug_list = []
  for policy in policies:
    op_1, params_1 = policy[0]
    op_2, params_2 = policy[1]
    print('op_1 ', op_1, ' pa_1 ', params_1)
    print('op_2 ', op_2, ' pa_2 ', params_2)

    aug = Compose([
      globals().get(op_1)(**params_1),
      globals().get(op_2)(**params_2),
    ])
    aug_list.append(aug)

  print('len(aug_list):', len(aug_list))
  resize = Resize(height=size, width=size, always_apply=True)

  def transform(image):
    image = np.array(image)
    if split == 'train':
     # image = base_aug(image=image)['image']
     # if len(aug_list) > 0:
    #     aug = random.choice(aug_list)
    #     image = aug(image=image)['image']
    #  print('image shape ', image.shape)
    #  image = resize(image=image)['image']
   #   image = misc.imresize(image, (size, size)).astype('float32')
      image = cv2.resize(image, (size, size))
      transform = transforms.Compose([
                transforms.ToPILImage(),
                transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
                transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5]),
                transforms.Normalize(mean = (0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5))
                ])
    
      image = transform(image)

    else:
    #  if size != image.shape[0]:
      #  image = resize(image=image)['image']
        #image = misc.imresize(image, (size, size)).astype('float32')
      image = cv2.resize(image, (size, size))
      transform = transforms.Compose([
                transforms.ToPILImage(),
                transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
                transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5]),
                transforms.Normalize(mean = (0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5))
                ])
    
      image = transform(image)


  #  image = image.astype(np.float32)
  #  if per_image_norm:
  #      mean = np.mean(image.reshape(-1, 3), axis=0)
  #      std = np.std(image.reshape(-1, 3), axis=0)
  #      image -= mean
  #      image /= (std + 0.0000001)
  #  else:
  #      image -= means
  #      image /= stds
  #  image = np.transpose(image, (2, 0, 1))

    return image

  return transform
コード例 #11
0
if __name__ == '__main__':
    import matplotlib.pyplot as plt
    from tqdm import tqdm
    from albumentations import Compose, OneOf, Normalize
    from albumentations import HorizontalFlip, VerticalFlip, RandomRotate90, RandomScale, RandomCrop
    from albumentations.pytorch import ToTensorV2

    dataset = Xview2(
        r'D:\DATA\xView2\train\images',
        r'D:\DATA\xView2\train\labels',
        transforms=Compose([
            OneOf([
                HorizontalFlip(True),
                VerticalFlip(True),
                RandomRotate90(True)
            ],
                  p=0.5),
            # RandomDiscreteScale([0.75, 1.25, 1.5], p=0.5),
            RandomCrop(640, 640, True),
            Normalize(mean=(0.485, 0.456, 0.406, 0.485, 0.456, 0.406),
                      std=(0.229, 0.224, 0.225, 0.229, 0.224, 0.225),
                      max_pixel_value=255),
            ToTensorV2(True),
        ]),
        include=('pre', 'post')).pairwise_mode()

    print(len(dataset))
    a = dataset[1]
    print()
    # img, mask = dataset[4]
コード例 #12
0
def train(model, cfg, model_cfg, start_epoch=0):
    cfg.batch_size = 28 if cfg.batch_size < 1 else cfg.batch_size
    cfg.val_batch_size = cfg.batch_size

    cfg.input_normalization = model_cfg.input_normalization
    crop_size = model_cfg.crop_size

    loss_cfg = edict()
    loss_cfg.instance_loss = SigmoidBinaryCrossEntropyLoss()
    loss_cfg.instance_loss_weight = 1.0

    num_epochs = 120
    num_masks = 1

    train_augmentator = Compose([
        Flip(),
        RandomRotate90(),
        ShiftScaleRotate(shift_limit=0.03,
                         scale_limit=0,
                         rotate_limit=(-3, 3),
                         border_mode=0,
                         p=0.75),
        PadIfNeeded(
            min_height=crop_size[0], min_width=crop_size[1], border_mode=0),
        RandomCrop(*crop_size),
        RandomBrightnessContrast(brightness_limit=(-0.25, 0.25),
                                 contrast_limit=(-0.15, 0.4),
                                 p=0.75),
        RGBShift(r_shift_limit=10, g_shift_limit=10, b_shift_limit=10, p=0.75)
    ],
                                p=1.0)

    val_augmentator = Compose([
        PadIfNeeded(
            min_height=crop_size[0], min_width=crop_size[1], border_mode=0),
        RandomCrop(*crop_size)
    ],
                              p=1.0)

    def scale_func(image_shape):
        return random.uniform(0.75, 1.25)

    points_sampler = MultiPointSampler(model_cfg.num_max_points,
                                       prob_gamma=0.7,
                                       merge_objects_prob=0.15,
                                       max_num_merged_objects=2)

    trainset = SBDDataset(
        cfg.SBD_PATH,
        split='train',
        num_masks=num_masks,
        augmentator=train_augmentator,
        points_from_one_object=False,
        input_transform=model_cfg.input_transform,
        min_object_area=80,
        keep_background_prob=0.0,
        image_rescale=scale_func,
        points_sampler=points_sampler,
        samples_scores_path='./models/sbd/sbd_samples_weights.pkl',
        samples_scores_gamma=1.25)

    valset = SBDDataset(cfg.SBD_PATH,
                        split='val',
                        augmentator=val_augmentator,
                        num_masks=num_masks,
                        points_from_one_object=False,
                        input_transform=model_cfg.input_transform,
                        min_object_area=80,
                        image_rescale=scale_func,
                        points_sampler=points_sampler)

    optimizer_params = {'lr': 5e-4, 'betas': (0.9, 0.999), 'eps': 1e-8}

    lr_scheduler = partial(torch.optim.lr_scheduler.MultiStepLR,
                           milestones=[100],
                           gamma=0.1)
    trainer = ISTrainer(model,
                        cfg,
                        model_cfg,
                        loss_cfg,
                        trainset,
                        valset,
                        optimizer_params=optimizer_params,
                        lr_scheduler=lr_scheduler,
                        checkpoint_interval=5,
                        image_dump_interval=200,
                        metrics=[AdaptiveIoU()],
                        max_interactive_points=model_cfg.num_max_points)
    logger.info(f'Starting Epoch: {start_epoch}')
    logger.info(f'Total Epochs: {num_epochs}')
    for epoch in range(start_epoch, num_epochs):
        trainer.training(epoch)
        trainer.validation(epoch)
コード例 #13
0
def policy_transform(split,
                     policies=None,
                     size=512,
                     per_image_norm=False,
                     mean_std=None,
                     **kwargs):
  means = np.array([127.5, 127.5, 127.5, 127.5])
  stds = np.array([255.0, 255.0, 255.0, 255.0])

  base_aug = Compose([
    RandomRotate90(),
    Flip(),
    Transpose(),
  ])

  if policies is None:
    policies = []

  if isinstance(policies, str):
    with open(policies, 'r') as fid:
      policies = eval(fid.read())
      policies = itertools.chain.from_iterable(policies)

  aug_list = []
  for policy in policies:
    op_1, params_1 = policy[0]
    op_2, params_2 = policy[1]
    print('op_1 ', op_1, ' pa_1 ', params_1)
    print('op_2 ', op_2, ' pa_2 ', params_2)

    aug = Compose([
      globals().get(op_1)(**params_1),
      globals().get(op_2)(**params_2),
    ])
    aug_list.append(aug)

  print('len(aug_list):', len(aug_list))
  resize = Resize(height=size, width=size, always_apply=True)

  def transform(image):
    if split == 'train':
      image = base_aug(image=image)['image']
      if len(aug_list) > 0:
        aug = random.choice(aug_list)
        image = aug(image=image)['image']
      image = resize(image=image)['image']
    else:
      if size != image.shape[0]:
        image = resize(image=image)['image']

    image = image.astype(np.float32)
    if per_image_norm:
        mean = np.mean(image.reshape(-1, 4), axis=0)
        std = np.std(image.reshape(-1, 4), axis=0)
        image -= mean
        image /= (std + 0.0000001)
    else:
        image -= means
        image /= stds
    image = np.transpose(image, (2, 0, 1))

    return image

  return transform
コード例 #14
0
ファイル: v1.py プロジェクト: dodler/kgl
from albumentations import Compose, Resize, RandomCrop, Flip, HorizontalFlip, VerticalFlip, Transpose, RandomRotate90, \
    ShiftScaleRotate, OneOf, OpticalDistortion
from albumentations.pytorch import ToTensor

train_aug = Compose([
    RandomCrop(height=96, width=96, p=0.2),
    OneOf([
        VerticalFlip(p=0.2),
        HorizontalFlip(p=0.3),
        Transpose(p=0.2),
        RandomRotate90(p=0.2),
    ],
          p=0.3),
    ShiftScaleRotate(p=0.2),
    OpticalDistortion(p=0.2),
    Resize(128, 128, always_apply=True),
    ToTensor()
])

valid_aug = Compose([Resize(128, 128, always_apply=True), ToTensor()])
コード例 #15
0
    def __getitem__(self, idx):
        if len(self.channels) < 2:
            raise Exception('You have to specify at least two channels.')

        data_info_row = self.df.iloc[idx]
        instance_name = '_'.join(
            [data_info_row['name'], data_info_row['position']])
        images_array, masks_array = [], []
        for k in range(1, self.num_images + 1):
            image_path = get_filepath(self.dataset_path,
                                      data_info_row['dataset_folder'],
                                      self.images_folder,
                                      instance_name + f'_{k}',
                                      file_type=self.image_type)

            img = filter_by_channels(read_tensor(image_path), self.channels, 1)
            images_array.append(img)

        mask_path = get_filepath(self.dataset_path,
                                 data_info_row['dataset_folder'],
                                 self.masks_folder,
                                 instance_name,
                                 file_type=self.mask_type)
        masks_array = read_tensor(mask_path)

        if self.phase == 'train':
            aug = Compose([
                RandomRotate90(),
                Flip(),
                OneOf(
                    [
                        RandomSizedCrop(min_max_height=(int(
                            self.image_size * 0.7), self.image_size),
                                        height=self.image_size,
                                        width=self.image_size),
                        RandomBrightnessContrast(brightness_limit=0.15,
                                                 contrast_limit=0.15),
                        #MedianBlur(blur_limit=3, p=0.2),
                        MaskDropout(p=0.6),
                        ElasticTransform(alpha=15, sigma=5, alpha_affine=5),
                        GridDistortion(p=0.6)
                    ],
                    p=0.8),
                ToTensor()
            ])
        else:
            aug = ToTensor()
        '''
        keys = ['image']
        values = [images_array[0]]
        for k in range(self.num_images-1):
            keys.append(f'image{k}')
            values.append(images_array[k+1])
        
        keys.append('mask')
        values.append(masks_array)
        
        #{"image" : images_array[0], "image2" : images_array[1], ..., "mask": masks_array, ...}
        aug_input = { keys[i] : values[i] for i in range(len(keys)) }

        augmented = aug(**aug_input)

        augmented_images = [augmented['image']]
        for k in range(self.num_images-1):
            augmented_images.append(np.transpose(augmented[f'image{k}'], ( 2, 0, 1))/255)

        augmented_masks = [augmented['mask']]

        return {'features': augmented_images, 'targets': augmented_masks, 'name': data_info_row['name'], 'position': data_info_row['position']}
        '''

        augmented = aug(image=np.concatenate(
            (images_array[0], images_array[1]), axis=-1),
                        mask=masks_array)

        augmented_images = [
            augmented['image'][:count_channels(self.channels), :, :],
            augmented['image'][count_channels(self.channels):, :, :]
        ]
        augmented_masks = [augmented['mask']]

        return {
            'features': augmented_images,
            'targets': augmented_masks,
            'name': data_info_row['name'],
            'position': data_info_row['position']
        }
コード例 #16
0
import re
import os
import glob
import numpy as np
import argparse
import matplotlib.pyplot as plt

from albumentations import (HorizontalFlip, VerticalFlip, Transpose,
                            RandomRotate90)

from PIL import Image

NUM_LABELS = 12

AUGMENTS = [
    RandomRotate90(p=1),
    HorizontalFlip(p=1),
    VerticalFlip(p=1),
    Transpose(p=1)
]

parser = argparse.ArgumentParser()
parser.add_argument('--dataroot',
                    required=True,
                    help='expriments results path')
opt = parser.parse_args()


def read(index, ext):
    file_name = f'{index}.{ext}'
    img_path = os.path.join(opt.dataroot, 'train', file_name)
コード例 #17
0
ファイル: hem_augs.py プロジェクト: dodler/kgl
from albumentations import Compose, ShiftScaleRotate, PadIfNeeded, RandomCrop, Resize, RandomSizedCrop, CLAHE, \
    RandomRotate90, Flip, OneOf, MotionBlur, MedianBlur, Blur, CenterCrop, LongestMaxSize, HorizontalFlip, VerticalFlip, \
    Transpose
from albumentations.pytorch import ToTensor

transform_train = Compose([
    RandomRotate90(0.2),
    Flip(p=0.2),
    ShiftScaleRotate(),
    OneOf([
        MotionBlur(p=.2),
        MedianBlur(blur_limit=3, p=0.1),
        Blur(blur_limit=3, p=0.1),
    ],
          p=0.2),
    ToTensor()
])

transform_test = Compose([ToTensor()])

IMG_SIZE_RAW = 224
RAW_CROP_SIZE = 448
transform_train_raw = Compose([
    Resize(RAW_CROP_SIZE, RAW_CROP_SIZE),
    # CenterCrop(width=IMG_SIZE_RAW, height=IMG_SIZE_RAW),
    RandomRotate90(0.2),
    Flip(p=0.2),
    ShiftScaleRotate(),
    ToTensor()
])
コード例 #18
0
    def __init__(self, config):
        super(AugmentedPair3, self).__init__(config)
        additional_targets = {
            "image{}".format(i): "image" for i in range(1, self.n_images)
        }
        p = 0.9
        appearance_augmentation = Compose(
            [
                OneOf(
                    [
                        MedianBlur(blur_limit=3, p=0.1),
                        Blur(blur_limit=3, p=0.1),
                    ],
                    p=0.5,
                ),
                OneOf(
                    [
                        RandomBrightnessContrast(p=0.3),
                        RGBShift(p=0.3),
                        HueSaturationValue(p=0.3),
                    ],
                    p=0.8,
                ),    
                OneOf(
                    [
                        RandomBrightnessContrast(p=0.3),
                        RGBShift(p=0.3),
                        HueSaturationValue(p=0.3),
                    ],
                    p=0.8,
                ),     
                OneOf(
                    [
                        RandomBrightnessContrast(p=0.3),
                        RGBShift(p=0.3),
                        HueSaturationValue(p=0.3),
                    ],
                    p=0.8,
                ),
                ToGray(p=0.1),  
                ChannelShuffle(p=0.3),
            ],
            p=p,
            additional_targets=additional_targets,
        )
        self.appearance_augmentation = appearance_augmentation  

        p = 0.9
        shape_augmentation = Compose(
            [
                OneOf([
                    Transpose(p=0.5),
                    HorizontalFlip(p=0.5),
                ], p=0.9),      
                OneOf([
                    RandomRotate90(p=1.0),
                ], p=0.9),                                             
                ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.25, rotate_limit=25, p=0.3, border_mode=cv2.BORDER_REPLICATE),
                OneOf([
                    # OpticalDistortion(p=0.3),
                    # GridDistortion(p=0.1),
                    IAAPiecewiseAffine(p=0.5),
                    ElasticTransform(p=0.5, border_mode=cv2.BORDER_REPLICATE)
                ], p=0.3),
            ],
            p=p,
            additional_targets=additional_targets,
        )
        self.shape_augmentation = shape_augmentation        
コード例 #19
0
 def __init__(self, prob):
     self.horizontal = HorizontalFlip(p=prob)
     self.vertical = VerticalFlip(p=prob)
     self.rotate = RandomRotate90(p=prob)
     self.transpose = Transpose(p=prob)
コード例 #20
0
    def __getitem__(self, idx):
        if len(self.channels) < 2:
            raise Exception('You have to specify at least two channels.')

        data_info_row = self.df.iloc[idx]
        instance_name = '_'.join(
            [data_info_row['name'], data_info_row['position']])

        images_array, masks_array = [], []
        #for k in range(1,self.num_images+1):
        for k in range(self.num_images, 0, -1):
            image_path = get_filepath(self.dataset_path,
                                      data_info_row['dataset_folder'],
                                      self.images_folder,
                                      instance_name + f'_{k}',
                                      file_type=self.image_type)

            img = filter_by_channels(read_tensor(image_path), self.channels, 1)
            images_array.append(img)

            mask_path = get_filepath(self.dataset_path,
                                     data_info_row['dataset_folder'],
                                     self.masks_folder,
                                     instance_name + f'_{k}',
                                     file_type=self.mask_type)
            msk = read_tensor(mask_path)
            masks_array.append(np.expand_dims(msk, axis=-1))

        aug = Compose([
            RandomRotate90(),
            Flip(),
            OneOf([
                RandomSizedCrop(min_max_height=(int(
                    self.image_size * 0.7), self.image_size),
                                height=self.image_size,
                                width=self.image_size),
                RandomBrightnessContrast(brightness_limit=0.15,
                                         contrast_limit=0.15),
                ElasticTransform(alpha=15, sigma=5, alpha_affine=5),
                GridDistortion(p=0.6)
            ],
                  p=0.8),
            ToTensor()
        ])

        augmented = aug(image=np.concatenate(images_array, axis=-1),
                        mask=np.concatenate(masks_array, axis=-1))

        augmented_images = torch.stack([
            augmented['image'][num_img *
                               count_channels(self.channels):(num_img + 1) *
                               count_channels(self.channels), :, :]
            for num_img in range(self.num_images)
        ])
        if self.all_masks:
            augmented_masks = torch.stack([
                augmented['mask'][:, :, :, i]
                for i in range(augmented['mask'].shape[-1])
            ]).squeeze()
        else:
            augmented_masks = torch.stack([augmented['mask'][:, :, :, -1]])

        return {
            'features': augmented_images,
            'targets': augmented_masks,
            'name': data_info_row['name'],
            'position': data_info_row['position']
        }
コード例 #21
0
    HorizontalFlip,
    VerticalFlip,
    CenterCrop,
    Compose,
    RandomRotate90,
    RandomBrightnessContrast,
    Normalize, RandomCrop, Blur
)

channel_max = [92.87763, 91.97153, 91.65466, 91.9873]

transform_rgb = {
    'train': Compose(
        [RandomCrop(512, 512, p=1.0),
         HorizontalFlip(p=.5),
         VerticalFlip(p=.5), RandomRotate90(p=0.5),
         RandomBrightnessContrast(p=0.3),
         Blur(p=0.3),
         Normalize(mean=[0.485, 0.456, 0.406],
                   std=[0.229, 0.224, 0.225]),
         ToTensor(),
         ]),
    'valid': Compose(
        [CenterCrop(512, 512),
         Normalize(mean=[0.485, 0.456, 0.406],
                   std=[0.229, 0.224, 0.225]),
         ToTensor()]),
    'inference': Compose(
        [
            Normalize(mean=[0.485, 0.456, 0.406],
                      std=[0.229, 0.224, 0.225]),
コード例 #22
0
    def __init__(self,
                 imgs: Sequence[str] = None,
                 suffix: str = '.path',
                 line_width: int = 4,
                 im_transforms: Callable[[Any],
                                         torch.Tensor] = transforms.Compose(
                                             []),
                 mode: str = 'path',
                 augmentation: bool = False,
                 valid_baselines: Sequence[str] = None,
                 merge_baselines: Dict[str, Sequence[str]] = None,
                 valid_regions: Sequence[str] = None,
                 merge_regions: Dict[str, Sequence[str]] = None):
        """
        Reads a list of image-json pairs and creates a data set.

        Args:
            imgs (list):
            suffix (int): Suffix to attach to image base name to load JSON
                          files from.
            line_width (int): Height of the baseline in the scaled input.
            target_size (tuple): Target size of the image as a (height, width) tuple.
            mode (str): Either path, alto, page, xml, or None. In alto, page,
                        and xml mode the baseline paths and image data is
                        retrieved from an ALTO/PageXML file. In `None` mode
                        data is iteratively added through the `add` method.
            augmentation (bool): Enable/disable augmentation.
            valid_baselines (list): Sequence of valid baseline identifiers. If
                                    `None` all are valid.
            merge_baselines (dict): Sequence of baseline identifiers to merge.
                                    Note that merging occurs after entities not
                                    in valid_* have been discarded.
            valid_regions (list): Sequence of valid region identifiers. If
                                  `None` all are valid.
            merge_regions (dict): Sequence of region identifiers to merge.
                                  Note that merging occurs after entities not
                                  in valid_* have been discarded.
        """
        super().__init__()
        self.mode = mode
        self.im_mode = '1'
        self.aug = None
        self.targets = []
        # n-th entry contains semantic of n-th class
        self.class_mapping = {
            'aux': {
                '_start_separator': 0,
                '_end_separator': 1
            },
            'baselines': {},
            'regions': {}
        }
        self.class_stats = {
            'baselines': defaultdict(int),
            'regions': defaultdict(int)
        }
        self.num_classes = 2
        self.mbl_dict = merge_baselines if merge_baselines is not None else {}
        self.mreg_dict = merge_regions if merge_regions is not None else {}
        self.valid_baselines = valid_baselines
        self.valid_regions = valid_regions
        if mode in ['alto', 'page', 'xml']:
            if mode == 'alto':
                fn = parse_alto
            elif mode == 'page':
                fn = parse_page
            elif mode == 'xml':
                fn = parse_xml
            im_paths = []
            self.targets = []
            for img in imgs:
                try:
                    data = fn(img)
                    im_paths.append(data['image'])
                    lines = defaultdict(list)
                    for line in data['lines']:
                        if valid_baselines is None or line[
                                'script'] in valid_baselines:
                            lines[self.mbl_dict.get(line['script'],
                                                    line['script'])].append(
                                                        line['baseline'])
                            self.class_stats['baselines'][self.mbl_dict.get(
                                line['script'], line['script'])] += 1
                    regions = defaultdict(list)
                    for k, v in data['regions'].items():
                        if valid_regions is None or k in valid_regions:
                            regions[self.mreg_dict.get(k, k)].extend(v)
                            self.class_stats['regions'][self.mreg_dict.get(
                                k, k)] += len(v)
                    data['regions'] = regions
                    self.targets.append({
                        'baselines': lines,
                        'regions': data['regions']
                    })
                except KrakenInputException as e:
                    logger.warning(e)
                    continue
            # get line types
            imgs = im_paths
            # calculate class mapping
            line_types = set()
            region_types = set()
            for page in self.targets:
                for line_type in page['baselines'].keys():
                    line_types.add(line_type)
                for reg_type in page['regions'].keys():
                    region_types.add(reg_type)
            idx = -1
            for idx, line_type in enumerate(line_types):
                self.class_mapping['baselines'][
                    line_type] = idx + self.num_classes
            self.num_classes += idx + 1
            idx = -1
            for idx, reg_type in enumerate(region_types):
                self.class_mapping['regions'][
                    reg_type] = idx + self.num_classes
            self.num_classes += idx + 1
        elif mode == 'path':
            pass
        elif mode is None:
            imgs = []
        else:
            raise Exception('invalid dataset mode')
        if augmentation:
            from albumentations import (
                Compose,
                ToFloat,
                FromFloat,
                RandomRotate90,
                Flip,
                OneOf,
                MotionBlur,
                MedianBlur,
                Blur,
                ShiftScaleRotate,
                OpticalDistortion,
                ElasticTransform,
                RandomBrightnessContrast,
                HueSaturationValue,
            )

            self.aug = Compose([
                ToFloat(),
                RandomRotate90(),
                Flip(),
                OneOf([
                    MotionBlur(p=0.2),
                    MedianBlur(blur_limit=3, p=0.1),
                    Blur(blur_limit=3, p=0.1),
                ],
                      p=0.2),
                ShiftScaleRotate(shift_limit=0.0625,
                                 scale_limit=0.2,
                                 rotate_limit=45,
                                 p=0.2),
                OneOf([
                    OpticalDistortion(p=0.3),
                    ElasticTransform(p=0.1),
                ],
                      p=0.2),
                HueSaturationValue(hue_shift_limit=20,
                                   sat_shift_limit=0.1,
                                   val_shift_limit=0.1,
                                   p=0.3),
            ],
                               p=0.5)
        self.imgs = imgs
        self.line_width = line_width
        # split image transforms into two. one part giving the final PIL image
        # before conversion to a tensor and the actual tensor conversion part.
        self.head_transforms = transforms.Compose(im_transforms.transforms[:2])
        self.tail_transforms = transforms.Compose(im_transforms.transforms[2:])
        self.seg_type = None
コード例 #23
0
    # gray
    norm_mean = [0.46152964]
    norm_std = [0.10963361]

    # RGB
    # norm_mean = [0.4976264, 0.45133978, 0.3993562]
    # norm_std = [0.11552592, 0.10886826, 0.10727626]

    # Albumentations
    train_Transform = Compose(
        [
            Resize(height=args.inputsize,
                   width=args.inputsize,
                   interpolation=Image.NEAREST,
                   p=1),
            RandomRotate90(0.5),
            Flip(p=0.5),
            ShiftScaleRotate(p=0.2, interpolation=Image.NEAREST
                             ),  # , border_mode=cv2.BORDER_CONSTANT, value=0
            # Normalize(mean=norm_mean, std=norm_std),
        ],
        p=1.0)

    valid_Transform = Compose(
        [
            Resize(height=args.inputsize,
                   width=args.inputsize,
                   interpolation=Image.NEAREST,
                   p=1),
            # Normalize(mean=norm_mean, std=norm_std),
        ],
コード例 #24
0
def train(inputs, working_dir, fold_id):
    start_epoch, step = 0, 0

    # TopCoder
    num_workers, batch_size = 8, 4 * 8
    gpus = [0, 1, 2, 3]

    # My machine
    # num_workers, batch_size = 8, 2 * 3
    # gpus = [0, 1]

    patience, n_epochs = 8, 150
    lr, min_lr, lr_update_rate = 1e-4, 5e-5, 0.5
    training_timelimit = 60 * 60 * 24 * 2  # 2 days
    st_time = time.time()

    model = unet_vgg16(pretrained=True)
    model = nn.DataParallel(model, device_ids=gpus).cuda()

    train_transformer = Compose([
        HorizontalFlip(p=0.5),
        RandomRotate90(p=0.5),
        RandomCrop(512, 512, p=1.0),
        Normalize(),
    ],
                                p=1.0)

    val_transformer = Compose([
        CenterCrop(512, 512, p=1.0),
        Normalize(),
    ],
                              p=1.0)

    # train/val loadrs
    df_cvfolds = read_cv_splits(inputs)
    trn_loader, val_loader = make_train_val_loader(train_transformer,
                                                   val_transformer, df_cvfolds,
                                                   fold_id, batch_size,
                                                   num_workers)

    # train
    criterion = binary_loss(jaccard_weight=0.25)
    optimizer = Adam(model.parameters(), lr=lr)

    report_epoch = 10

    model_name = f'v12_f{fold_id}'
    fh = open_log(model_name)

    # vers for early stopping
    best_score = 0
    not_improved_count = 0

    for epoch in range(start_epoch, n_epochs):
        model.train()

        tl = trn_loader  # alias
        trn_metrics = Metrics()

        try:
            tq = tqdm.tqdm(total=(len(tl) * trn_loader.batch_size))
            tq.set_description(f'Ep{epoch:>3d}')
            for i, (inputs, targets, labels, names) in enumerate(trn_loader):
                inputs = inputs.cuda()
                targets = targets.cuda()

                outputs = model(inputs)
                loss = criterion(outputs, targets)
                optimizer.zero_grad()

                # Increment step counter
                batch_size = inputs.size(0)
                loss.backward()
                optimizer.step()
                step += 1
                tq.update(batch_size)

                # Update eval metrics
                trn_metrics.loss.append(loss.item())
                trn_metrics.bce.append(criterion._stash_bce_loss.item())
                trn_metrics.jaccard.append(criterion._stash_jaccard.item())

                if i > 0 and i % report_epoch == 0:
                    report_metrics = Bunch(
                        epoch=epoch,
                        step=step,
                        trn_loss=np.mean(trn_metrics.loss[-report_epoch:]),
                        trn_bce=np.mean(trn_metrics.bce[-report_epoch:]),
                        trn_jaccard=np.mean(
                            trn_metrics.jaccard[-report_epoch:]),
                    )
                    write_event(fh, **report_metrics)
                    tq.set_postfix(loss=f'{report_metrics.trn_loss:.5f}',
                                   bce=f'{report_metrics.trn_bce:.5f}',
                                   jaccard=f'{report_metrics.trn_jaccard:.5f}')

            # End of epoch
            report_metrics = Bunch(
                epoch=epoch,
                step=step,
                trn_loss=np.mean(trn_metrics.loss[-report_epoch:]),
                trn_bce=np.mean(trn_metrics.bce[-report_epoch:]),
                trn_jaccard=np.mean(trn_metrics.jaccard[-report_epoch:]),
            )
            write_event(fh, **report_metrics)
            tq.set_postfix(loss=f'{report_metrics.trn_loss:.5f}',
                           bce=f'{report_metrics.trn_bce:.5f}',
                           jaccard=f'{report_metrics.trn_jaccard:.5f}')
            tq.close()
            save(model, epoch, step, model_name)

            # Run validation
            val_metrics = validation(model, criterion, val_loader, epoch, step,
                                     fh)
            report_val_metrics = Bunch(
                epoch=epoch,
                step=step,
                val_loss=np.mean(val_metrics.loss[-report_epoch:]),
                val_bce=np.mean(val_metrics.bce[-report_epoch:]),
                val_jaccard=np.mean(val_metrics.jaccard[-report_epoch:]),
            )
            write_event(fh, **report_val_metrics)

            if time.time() - st_time > training_timelimit:
                tq.close()
                break

            if best_score < report_val_metrics.val_jaccard:
                best_score = report_val_metrics.val_jaccard
                not_improved_count = 0
                copy_best(model, epoch, model_name, step)
            else:
                not_improved_count += 1

            if not_improved_count >= patience:
                # Update learning rate and optimizer

                lr *= lr_update_rate
                # Stop criterion
                if lr < min_lr:
                    tq.close()
                    break

                not_improved_count = 0

                # Load best weight
                del model
                model = unet_vgg16(pretrained=False)
                path = f'/root/working/models/{model_name}/{model_name}_best'
                cp = torch.load(path)
                model = nn.DataParallel(model).cuda()
                epoch = cp['epoch']
                model.load_state_dict(cp['model'])
                model = model.module
                model = nn.DataParallel(model, device_ids=gpus).cuda()

                # Init optimizer
                optimizer = Adam(model.parameters(), lr=lr)

        except KeyboardInterrupt:
            save(model, epoch, step, model_name)
            tq.close()
            fh.close()
            sys.exit(1)
        except Exception as e:
            raise e
            break

    fh.close()
コード例 #25
0
    RandomGamma,
)

transformimg = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406][::-1], std=[0.225, 0.224, 0.225][::-1]
        ),
    ]
)

transformaug = Compose(
    [
        VerticalFlip(p=0.5),
        RandomRotate90(p=0.5),
        ISONoise(p=0.5),
        RandomBrightnessContrast(p=0.5),
        RandomGamma(p=0.5),
        RandomFog(fog_coef_lower=0.025, fog_coef_upper=0.1, p=0.5),
    ]
)


class XViewDataset(Dataset):
    def __init__(
        self, size=None, aug=True, pattern="data/train/images1024/*pre_disaster*.png"
    ):
        self.name = "train"
        self.aug = aug
        self.pre = glob(pattern)
コード例 #26
0
ファイル: data_procee.py プロジェクト: lxg15066629402/code
def augment_data(images, masks, save_path, augment=True):
    """
    Performing data augmentation.
    """

    crop_size = (256, 256)
    size = (2018, 2006)
    # 将数据与标签组合
    for image, mask in tqdm(zip(images, masks), total=len(images)):
        image_name = image.split("/")[-1].split(".")[0]
        mask_name = mask.split("/")[-1].split(".")[0]

        x, y = read_data(image, mask)
        # try except 使用
        try:
            h, w, c = x.shape   # 获取图像的 w h z
        except Exception as e:
            image = image[:-1]
            x, y = read_data(image, mask)
            h, w, c = x.shape

        # 进行数据增强
        if augment == True:
            # Center Crop
            aug = CenterCrop(p=1, height=crop_size[1], width=crop_size[0])
            augmented = aug(image=x, mask=y)
            x1 = augmented['image']
            y1 = augmented['mask']

            # Crop
            x_min = 0
            y_min = 0
            x_max = x_min + crop_size[0]
            y_max = y_min + crop_size[1]

            aug = Crop(p=1, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max)
            augmented = aug(image=x, mask=y)
            x2 = augmented['image']
            y2 = augmented['mask']

            # Random Rotate 90 degree
            aug = RandomRotate90(p=1)
            augmented = aug(image=x, mask=y)
            x3 = augmented['image']
            y3 = augmented['mask']

            # Transpose
            aug = Transpose(p=1)
            augmented = aug(image=x, mask=y)
            x4 = augmented['image']
            y4 = augmented['mask']

            # ElasticTransform
            aug = ElasticTransform(p=1, alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03)
            augmented = aug(image=x, mask=y)
            x5 = augmented['image']
            y5 = augmented['mask']

            # Grid Distortion
            aug = GridDistortion(p=1)
            augmented = aug(image=x, mask=y)
            x6 = augmented['image']
            y6 = augmented['mask']

            # Optical Distortion
            aug = OpticalDistortion(p=1, distort_limit=2, shift_limit=0.5)
            augmented = aug(image=x, mask=y)
            x7 = augmented['image']
            y7 = augmented['mask']

            # Vertical Flip
            aug = VerticalFlip(p=1)
            augmented = aug(image=x, mask=y)
            x8 = augmented['image']
            y8 = augmented['mask']

            # Horizontal Flip
            aug = HorizontalFlip(p=1)
            augmented = aug(image=x, mask=y)
            x9 = augmented['image']
            y9 = augmented['mask']

            # Grayscale
            x10 = cv2.cvtColor(x, cv2.COLOR_RGB2GRAY)
            y10 = y

            # Grayscale Vertical Flip
            aug = VerticalFlip(p=1)
            augmented = aug(image=x10, mask=y10)
            x11 = augmented['image']
            y11 = augmented['mask']

            # Grayscale Horizontal Flip
            aug = HorizontalFlip(p=1)
            augmented = aug(image=x10, mask=y10)
            x12 = augmented['image']
            y12 = augmented['mask']

            # Grayscale Center Crop
            aug = CenterCrop(p=1, height=crop_size[1], width=crop_size[0])
            augmented = aug(image=x10, mask=y10)
            x13 = augmented['image']
            y13 = augmented['mask']

            # Random Brightness Contrast
            aug = RandomBrightnessContrast(p=1)
            augmented = aug(image=x, mask=y)
            x14 = augmented['image']
            y14 = augmented['mask']

            # Random Gamma
            aug = RandomGamma(p=1)
            augmented = aug(image=x, mask=y)
            x15 = augmented['image']
            y15 = augmented['mask']

            aug = HueSaturationValue(p=1)
            augmented = aug(image=x, mask=y)
            x16 = augmented['image']
            y16 = augmented['mask']

            aug = RGBShift(p=1)
            augmented = aug(image=x, mask=y)
            x17 = augmented['image']
            y17 = augmented['mask']

            aug = RandomBrightness(p=1)
            augmented = aug(image=x, mask=y)
            x18 = augmented['image']
            y18 = augmented['mask']

            aug = RandomContrast(p=1)
            augmented = aug(image=x, mask=y)
            x19 = augmented['image']
            y19 = augmented['mask']

            aug = MotionBlur(p=1, blur_limit=7)
            augmented = aug(image=x, mask=y)
            x20 = augmented['image']
            y20 = augmented['mask']

            aug = MedianBlur(p=1, blur_limit=10)
            augmented = aug(image=x, mask=y)
            x21 = augmented['image']
            y21 = augmented['mask']

            aug = GaussianBlur(p=1, blur_limit=10)
            augmented = aug(image=x, mask=y)
            x22 = augmented['image']
            y22 = augmented['mask']

            aug = GaussNoise(p=1)
            augmented = aug(image=x, mask=y)
            x23 = augmented['image']
            y23 = augmented['mask']

            aug = ChannelShuffle(p=1)
            augmented = aug(image=x, mask=y)
            x24 = augmented['image']
            y24 = augmented['mask']

            aug = CoarseDropout(p=1, max_holes=8, max_height=32, max_width=32)
            augmented = aug(image=x, mask=y)
            x25 = augmented['image']
            y25 = augmented['mask']

            images = [
                x, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,
                x11, x12, x13, x14, x15, x16, x17, x18, x19, x20,
                x21, x22, x23, x24, x25
            ]
            masks = [
                y, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10,
                y11, y12, y13, y14, y15, y16, y17, y18, y19, y20,
                y21, y22, y23, y24, y25
            ]

        else:
            images = [x]
            masks = [y]

        idx = 0
        # 数据增强之后数据
        for i, m in zip(images, masks):
            i = cv2.resize(i, size)
            m = cv2.resize(m, size)

            tmp_image_name = f"{image_name}_{idx}.jpg"
            tmp_mask_name = f"{mask_name}_{idx}.jpg"

            image_path = os.path.join(save_path, "image/", tmp_image_name)
            mask_path = os.path.join(save_path, "mask/", tmp_mask_name)

            # 保存数据
            cv2.imwrite(image_path, i)
            cv2.imwrite(mask_path, m)

            idx += 1
コード例 #27
0
from albumentations import (RandomRotate90, Transpose, Flip, Compose, Resize,
                            Normalize)
from albumentations.pytorch import ToTensor

SIZE = 320

p = 0.4
train_aug = Compose([
    RandomRotate90(),
    Flip(),
    Transpose(),
    Resize(width=SIZE, height=SIZE, always_apply=True),
    ToTensor(normalize={
        'mean': [0.485, 0.456, 0.406],
        'std': [0.229, 0.224, 0.225]
    })
],
                    p=p)

valid_aug = Compose([
    Resize(width=SIZE, height=SIZE, always_apply=True),
    ToTensor(normalize={
        'mean': [0.485, 0.456, 0.406],
        'std': [0.229, 0.224, 0.225]
    }),
],
                    p=1.0)
コード例 #28
0
ファイル: dataset.py プロジェクト: jaidevd/planet-amazon
def get_data(img_size, batch_size):
    CSV_PATH = DATA_PATH / 'train_v2.csv'
    IMG_FOLDER = DATA_PATH / 'train-jpg'
    EXT = 'jpg'
    SZ = img_size
    BS = batch_size
    MEAN, STD = np.array([0.485, 0.456,
                          0.406]), np.array([0.229, 0.224, 0.225])

    # torch transforms
    # transform = transforms.Compose([
    #     transforms.Resize(SZ),
    #     transforms.ToTensor(),
    #     transforms.Normalize(MEAN, STD)
    # ])

    transform = {
        'train':
        Compose([
            Resize(height=SZ, width=SZ),
            CLAHE(clip_limit=1.0, p=0.25),
            Flip(p=0.5),
            RandomRotate90(p=0.5),
            RandomBrightnessContrast(brightness_limit=0.3,
                                     contrast_limit=0.3,
                                     p=0.5),
            ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, rotate_limit=0),
            RGBShift(p=0.25),
            Normalize(mean=MEAN, std=STD),
            ToTensor()
        ]),
        'val':
        Compose([
            Resize(height=SZ, width=SZ),
            Flip(p=0.5),
            RandomRotate90(p=0.5),
            Normalize(mean=MEAN, std=STD),
            ToTensor()
        ])
    }

    train_ds = PlanetDataset(CSV_PATH / 'train.csv', IMG_FOLDER, EXT,
                             transform['train'])
    val_ds = PlanetDataset(CSV_PATH / 'val.csv',
                           IMG_FOLDER,
                           EXT,
                           transform['val'],
                           val=True)
    train_dl = DataLoader(train_ds,
                          batch_size=BS,
                          shuffle=True,
                          num_workers=4,
                          pin_memory=True,
                          drop_last=True)
    val_dl = DataLoader(val_ds,
                        batch_size=BS * 2,
                        shuffle=False,
                        num_workers=4,
                        pin_memory=True,
                        drop_last=True)

    # Show the details in the console
    print(f'''Train DS: {train_ds.img_folder}   \t \
              Ext: {train_ds.ext}               \t \
              x_train: {train_ds.x_train.shape} \t \
              y_train: {train_ds.y_train.shape} \t''')

    print(f'''Validation DS: {val_ds.img_folder} \t \
              Ext: {val_ds.ext}                  \t \
              x_train: {val_ds.x_train.shape}    \t \
              y_train: {val_ds.y_train.shape}    \t''')

    return (train_dl, val_dl)
コード例 #29
0
def augment_data(images, masks, save_path, augment=True):
    """ Performing data augmentation. """
    size = (512, 512)
    crop_size = (448, 448)

    for idx, (x, y) in tqdm(enumerate(zip(images, masks)), total=len(images)):
        image_name = x.split("/")[-1].split(".")[0]
        mask_name = y.split("/")[-1].split(".")[0]

        x = cv2.imread(x, cv2.IMREAD_COLOR)
        y = cv2.imread(y, cv2.IMREAD_COLOR)

        if x.shape[0] >= size[0] and x.shape[1] >= size[1]:
            if augment == True:
                ## Crop
                x_min = 0
                y_min = 0
                x_max = x_min + size[0]
                y_max = y_min + size[1]

                aug = Crop(p=1, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max)
                augmented = aug(image=x, mask=y)
                x1 = augmented['image']
                y1 = augmented['mask']

                # Random Rotate 90 degree
                aug = RandomRotate90(p=1)
                augmented = aug(image=x, mask=y)
                x2 = augmented['image']
                y2 = augmented['mask']

                ## ElasticTransform
                aug = ElasticTransform(p=1, alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03)
                augmented = aug(image=x, mask=y)
                x3 = augmented['image']
                y3 = augmented['mask']

                ## Grid Distortion
                aug = GridDistortion(p=1)
                augmented = aug(image=x, mask=y)
                x4 = augmented['image']
                y4 = augmented['mask']

                ## Optical Distortion
                aug = OpticalDistortion(p=1, distort_limit=2, shift_limit=0.5)
                augmented = aug(image=x, mask=y)
                x5 = augmented['image']
                y5 = augmented['mask']

                ## Vertical Flip
                aug = VerticalFlip(p=1)
                augmented = aug(image=x, mask=y)
                x6 = augmented['image']
                y6 = augmented['mask']

                ## Horizontal Flip
                aug = HorizontalFlip(p=1)
                augmented = aug(image=x, mask=y)
                x7 = augmented['image']
                y7 = augmented['mask']

                ## Grayscale
                x8 = cv2.cvtColor(x, cv2.COLOR_RGB2GRAY)
                y8 = y

                ## Grayscale Vertical Flip
                aug = VerticalFlip(p=1)
                augmented = aug(image=x8, mask=y8)
                x9 = augmented['image']
                y9 = augmented['mask']

                ## Grayscale Horizontal Flip
                aug = HorizontalFlip(p=1)
                augmented = aug(image=x8, mask=y8)
                x10 = augmented['image']
                y10 = augmented['mask']

                # aug = RandomBrightnessContrast(p=1)
                # augmented = aug(image=x, mask=y)
                # x11 = augmented['image']
                # y11 = augmented['mask']
                #
                # aug = RandomGamma(p=1)
                # augmented = aug(image=x, mask=y)
                # x12 = augmented['image']
                # y12 = augmented['mask']
                #
                # aug = HueSaturationValue(p=1)
                # augmented = aug(image=x, mask=y)
                # x13 = augmented['image']
                # y13 = augmented['mask']

                aug = RGBShift(p=1)
                augmented = aug(image=x, mask=y)
                x14 = augmented['image']
                y14 = augmented['mask']

                # aug = RandomBrightness(p=1)
                # augmented = aug(image=x, mask=y)
                # x15 = augmented['image']
                # y15 = augmented['mask']
                #
                # aug = RandomContrast(p=1)
                # augmented = aug(image=x, mask=y)
                # x16 = augmented['image']
                # y16 = augmented['mask']

                aug = ChannelShuffle(p=1)
                augmented = aug(image=x, mask=y)
                x17 = augmented['image']
                y17 = augmented['mask']

                aug = CoarseDropout(p=1, max_holes=10, max_height=32, max_width=32)
                augmented = aug(image=x, mask=y)
                x18 = augmented['image']
                y18 = augmented['mask']

                aug = GaussNoise(p=1)
                augmented = aug(image=x, mask=y)
                x19 = augmented['image']
                y19 = augmented['mask']

                # aug = MotionBlur(p=1, blur_limit=7)
                # augmented = aug(image=x, mask=y)
                # x20 = augmented['image']
                # y20 = augmented['mask']
                #
                # aug = MedianBlur(p=1, blur_limit=11)
                # augmented = aug(image=x, mask=y)
                # x21 = augmented['image']
                # y21 = augmented['mask']
                #
                # aug = GaussianBlur(p=1, blur_limit=11)
                # augmented = aug(image=x, mask=y)
                # x22 = augmented['image']
                # y22 = augmented['mask']

                ##
                aug = CenterCrop(256, 256, p=1)
                augmented = aug(image=x, mask=y)
                x23 = augmented['image']
                y23 = augmented['mask']

                aug = CenterCrop(384, 384, p=1)
                augmented = aug(image=x, mask=y)
                x24 = augmented['image']
                y24 = augmented['mask']

                aug = CenterCrop(448, 448, p=1)
                augmented = aug(image=x, mask=y)
                x25 = augmented['image']
                y25 = augmented['mask']

                ## x23 Vertical Flip
                aug = VerticalFlip(p=1)
                augmented = aug(image=x23, mask=y23)
                x26 = augmented['image']
                y26 = augmented['mask']

                ## x23 Horizontal Flip
                aug = HorizontalFlip(p=1)
                augmented = aug(image=x23, mask=y23)
                x27 = augmented['image']
                y27 = augmented['mask']

                ## x24 Vertical Flip
                aug = VerticalFlip(p=1)
                augmented = aug(image=x24, mask=y24)
                x28 = augmented['image']
                y28 = augmented['mask']

                ## x24 Horizontal Flip
                aug = HorizontalFlip(p=1)
                augmented = aug(image=x24, mask=y24)
                x29 = augmented['image']
                y29 = augmented['mask']

                ## x25 Vertical Flip
                aug = VerticalFlip(p=1)
                augmented = aug(image=x25, mask=y25)
                x30 = augmented['image']
                y30 = augmented['mask']

                ## x25 Horizontal Flip
                aug = HorizontalFlip(p=1)
                augmented = aug(image=x25, mask=y25)
                x31 = augmented['image']
                y31 = augmented['mask']

                images = [
                    x, x1, x2, x3, x4, x5, x6, x7, x8, x9,
                    x10,
                    # x11, x12, x13,
                    x14,
                    # x15, x16,
                    x17, x18, x19,
                    # x20, x21, x22,
                    x23, x24, x25, x26, x27, x28, x29,
                    x30, x31
                ]
                masks  = [
                    y, y1, y2, y3, y4, y5, y6, y7, y8, y9,
                    y10,
                    # y11, y12, y13,
                    y14,
                    # y15, y16,
                    y17, y18, y19,
                    # y20, y21, y22,
                    y23, y24, y25, y26, y27, y28, y29,
                    y30, y31
                ]

            else:
                images = [x]
                masks  = [y]

            idx = 0
        for i, m in zip(images, masks):
            i = cv2.resize(i, size)
            m = cv2.resize(m, size)

            if len(images) == 1:
                tmp_image_name = f"{image_name}.jpg"
                tmp_mask_name  = f"{mask_name}.jpg"
            else:
                tmp_image_name = f"{image_name}_{idx}.jpg"
                tmp_mask_name  = f"{mask_name}_{idx}.jpg"

            image_path = os.path.join(save_path, "image/", tmp_image_name)
            mask_path  = os.path.join(save_path, "mask/", tmp_mask_name)

            cv2.imwrite(image_path, i)
            cv2.imwrite(mask_path, m)

            idx += 1
コード例 #30
0
def train(file_pattern,
          train_num_batches=None,
          train_aug=False,
          train_batch_size=1,
          val_batch_size=1,
          learning_rate=1e-3,
          epochs=1,
          verbosity=2,
          file_directory=None,
          resume=None,
          train_shuffle=True,
          pre_image_mean=None,
          post_image_mean=None):
    """
    Function to train the UNet model
    Parameters
    ----------
    file_pattern : string
        Location where the image folder is for the data. Example format:
        "images/*pre_disaster*.png"
    train_num_batches : int
        Number of batches for the training set, if none, the full dataset will
        be used.
    train_aug : bool
        If true, augmentations are performed.
    train_batch_size : int, default 5
        Batch size for the training set.
    val_batch_size : int, default 5
        Batch size for the validation set.
    learning_rate : float, default 0.00001
        Learning rate for the UNet.
    epochs : int, default 1
        How many epochs for the training to run.
    verbosity : int, default 2
        How verbose you'd like the output to be.
    file_directory : string, default None:
        Directory where you'd like the output files saved.
    resume : string, default None
        Enter in a string for the saved model file and training will resume
        from this instance.
    train_shuffle : bool
        If True, the training data is shuffled for each epoch.
    pre_image_mean : str
        The filepath for the pre image mean numpy array file.
    post_image_mean : str
        The filepath for the post image mean numpy array file.
    Returns
    -------
    Saves the model weights, csv logs, and tensorboard files in the original
    directories specified.

    """
    if file_directory is None:
        file_directory = os.path.abspath(
            os.path.join(os.getcwd(), "saved_models"))

    tensorboard_path = os.path.join(
        file_directory, "logs",
        "tboard_{}".format(datetime.datetime.now().strftime("%Y%m%d-%H%M")))
    weights_path = os.path.join(
        file_directory, "unet_weights_{}".format(
            datetime.datetime.now().strftime("%Y%m%d-%H%M")))
    csv_logger_path = os.path.join(
        file_directory,
        "log_unet_{}{}".format(datetime.datetime.now().strftime("%Y%m%d-%H%M"),
                               ".csv"))

    if train_aug:
        train_augs = Compose([
            VerticalFlip(p=0.5),
            RandomRotate90(p=0.5),
            ISONoise(p=0.5),
            RandomBrightnessContrast(p=0.5),
            RandomGamma(p=0.5),
            RandomFog(fog_coef_lower=0.025, fog_coef_upper=0.1, p=0.5),
        ])

    else:
        train_augs = None

    # Weighted categorical cross entropy weights
    # class_weights = tf.constant([0.1, 1.0, 2.0, 2.0, 2.0])
    # class_weights = tf.constant([1.0, 1.0, 0.5, 0.5, 0.5])
    class_weights = tf.constant([1.0, 1.0, 3.0, 3.0, 3.0])

    train_data = LabeledImageDataset(num_batches=train_num_batches,
                                     augmentations=train_augs,
                                     pattern=file_pattern,
                                     shuffle=train_shuffle,
                                     n_classes=5,
                                     batch_size=train_batch_size,
                                     normalize=True)

    # Using random samples from train for validation
    val_data = LabeledImageDataset(num_batches=100,
                                   augmentations=train_augs,
                                   pattern=file_pattern,
                                   shuffle=train_shuffle,
                                   n_classes=5,
                                   batch_size=val_batch_size,
                                   normalize=True)
    if resume:
        try:
            print("the pretrained model was loaded")
            model = UNet(num_classes=5).model((None, None, 3))
            model.load_weights(resume)
        except OSError:
            print("The model file could not be found. "
                  "Starting from a new model instance")
            model = UNet(num_classes=5).model((None, None, 3))
    else:
        model = UNet(num_classes=5).model((None, None, 3))

    metrics = [tf.keras.metrics.CategoricalAccuracy()]
    for i in range(5):
        metrics.append(Precision(class_id=i, name=f"prec_class_{i}"))
        metrics.append(Recall(class_id=i, name=f"rec_class_{i}"))

    model.compile(optimizer=keras.optimizers.RMSprop(lr=learning_rate),
                  loss=CombinedLoss(class_weights),
                  metrics=metrics)

    # Creating a checkpoint to save the model after every epoch if the
    # validation loss has decreased
    model_checkpoint = ModelCheckpoint("dual_unet_{epoch:02d}-{loss:.2f}.hdf5",
                                       monitor='loss',
                                       save_best_only=False,
                                       mode='min',
                                       save_weights_only=True,
                                       verbose=verbosity)

    csv_logger = CSVLogger(csv_logger_path, append=True, separator=',')

    lr_logger = ReduceLROnPlateau(monitor='loss',
                                  factor=0.2,
                                  patience=1,
                                  verbose=verbosity,
                                  mode='min',
                                  min_lr=1e-6)

    tensorboard_cb = TensorBoard(log_dir=tensorboard_path, write_images=True)

    try:
        model.fit(train_data,
                  epochs=epochs,
                  verbose=verbosity,
                  callbacks=[
                      LossAndErrorPrintingCallback(), model_checkpoint,
                      csv_logger, lr_logger, tensorboard_cb
                  ],
                  validation_data=val_data,
                  workers=6)

    except KeyboardInterrupt:
        save_model(model, pause=1)
        sys.exit()
    except Exception as exc:
        save_model(model, pause=0)
        raise exc