コード例 #1
0
    def __init__(self, args):
        self.run_name = args.run_name + '_' + str(time.time()).split('.')[0]
        self.current_run_basepath = args.network_metrics_basepath + '/' + self.run_name + '/'
        self.learning_rate = args.learning_rate
        self.epochs = args.epochs
        self.test_net = args.test_net
        self.train_net = args.train_net
        self.batch_size = args.batch_size
        self.num_classes = args.num_classes
        self.audio_basepath = args.audio_basepath
        self.train_data_file = args.train_data_file
        self.test_data_file = args.test_data_file
        self.data_read_path = args.data_save_path
        self.is_cuda_available = torch.cuda.is_available()
        self.display_interval = args.display_interval
        self.sampling_rate = args.sampling_rate
        self.sample_size_in_seconds = args.sample_size_in_seconds
        self.overlap = args.overlap

        self.network_metrics_basepath = args.network_metrics_basepath
        self.tensorboard_summary_path = self.current_run_basepath + args.tensorboard_summary_path
        self.network_save_path = self.current_run_basepath + args.network_save_path

        self.network_restore_path = args.network_restore_path

        self.device = torch.device("cuda" if self.is_cuda_available else "cpu")
        self.network_save_interval = args.network_save_interval
        self.normalise = args.normalise_while_training
        self.data_augment = args.data_augment
        self.dropout = args.dropout
        self.threshold = args.threshold
        self.debug_filename = self.current_run_basepath + '/' + args.debug_filename

        paths = [self.network_save_path, self.tensorboard_summary_path]
        file_utils.create_dirs(paths)

        self.pos_weight = None
        self.learning_rate_decay = args.learning_rate_decay

        self._min, self._max = float('inf'), -float('inf')
        self.logger = Logger(name=self.run_name,
                             log_path=self.network_save_path).get_logger()
        self.logger.info(str(json.dumps(args, indent=4)))

        self.writer = SummaryWriter(self.tensorboard_summary_path)
        self.batch_loss, self.batch_accuracy, self.uar = [], [], []
        self.logger.info(f'Configs used:\n{json.dumps(args, indent=4)}')
        self.data_loaders = {}
        self.dataset_sizes = {}
コード例 #2
0
    def __init__(self, args):
        self.run_name = args.run_name + '_' + str(time.time()).split('.')[0]
        self.current_run_basepath = args.network_metrics_basepath + '/' + self.run_name + '/'
        self.learning_rate = args.learning_rate
        self.epochs = args.epochs
        self.test_net = args.test_net
        self.train_net = args.train_net
        self.batch_size = args.batch_size
        self.num_classes = args.num_classes
        self.audio_basepath = args.audio_basepath
        self.train_data_file = args.train_data_file
        self.test_data_file = args.test_data_file
        self.data_read_path = args.data_save_path
        self.is_cuda_available = torch.cuda.is_available()
        self.display_interval = args.display_interval
        self.sampling_rate = args.sampling_rate
        self.sample_size_in_seconds = args.sample_size_in_seconds
        self.overlap = args.overlap
        self.alpha = args.alpha
        self.beta = args.beta

        self.network_metrics_basepath = args.network_metrics_basepath
        self.tensorboard_summary_path = self.current_run_basepath + args.tensorboard_summary_path
        self.network_save_path = self.current_run_basepath + args.network_save_path

        self.network_restore_path = args.network_restore_path

        self.device = torch.device("cuda" if self.is_cuda_available else "cpu")
        self.network_save_interval = args.network_save_interval
        self.normalise = args.normalise_while_training
        self.dropout = args.dropout
        self.threshold = args.threshold

        paths = [self.network_save_path, self.tensorboard_summary_path]
        file_utils.create_dirs(paths)

        self.network = ConvAutoEncoder().to(self.device)
        self.reconstruction_loss = nn.BCEWithLogitsLoss()
        self.optimiser = optim.Adam(self.network.parameters(), lr=self.learning_rate)

        self._min, self._max = float('inf'), -float('inf')

        if self.train_net:
            self.network.train()
            self.log_file = open(self.network_save_path + '/' + self.run_name + '.log', 'w')
            self.log_file.write(json.dumps(args))
        if self.test_net:
            print('Loading Network')
            self.network.load_state_dict(torch.load(self.network_restore_path, map_location=self.device))
            self.network.eval()
            self.log_file = open(self.network_restore_path.replace('_40.pt', '.log'), 'a')
            print('\n\n\n********************************************************', file=self.log_file)
            print('Testing Model - ', self.network_restore_path)
            print('Testing Model - ', self.network_restore_path, file=self.log_file)
            print('********************************************************', file=self.log_file)

        self.writer = SummaryWriter(self.tensorboard_summary_path)
        print("Network config:\n", self.network)
        print("Network config:\n", self.network, file=self.log_file)

        self.batch_accuracy, self.uar = [], []

        print('Configs used:\n', json.dumps(args, indent=4))
        print('Configs used:\n', json.dumps(args, indent=4), file=self.log_file)
コード例 #3
0
    def __init__(self, args):
        self.run_name = args.run_name + '_' + str(time.time()).split('.')[0]
        self.current_run_basepath = args.network_metrics_basepath + '/' + self.run_name + '/'
        self.learning_rate = args.learning_rate
        self.epochs = args.epochs
        self.test_net = args.test_net
        self.train_net = args.train_net
        self.batch_size = args.batch_size
        self.num_classes = args.num_classes
        self.audio_basepath = args.audio_basepath
        self.train_data_file = args.train_data_file
        self.test_data_file = args.test_data_file
        self.data_read_path = args.data_save_path
        self.is_cuda_available = torch.cuda.is_available()
        self.display_interval = args.display_interval
        self.sampling_rate = args.sampling_rate
        self.sample_size_in_seconds = args.sample_size_in_seconds
        self.overlap = args.overlap

        self.network_metrics_basepath = args.network_metrics_basepath
        self.tensorboard_summary_path = self.current_run_basepath + args.tensorboard_summary_path
        self.network_save_path = self.current_run_basepath + args.network_save_path

        self.network_restore_path = args.network_restore_path

        self.device = torch.device("cuda" if self.is_cuda_available else "cpu")
        self.network_save_interval = args.network_save_interval
        self.normalise = args.normalise_while_training
        self.dropout = args.dropout
        self.threshold = args.threshold
        self.debug_filename = self.current_run_basepath + '/' + args.debug_filename

        paths = [self.network_save_path, self.tensorboard_summary_path]
        file_utils.create_dirs(paths)

        args.sincnet_saved_model = args.data_save_path + args.sincnet_saved_model
        self.sincnet_params = []

        self.network = SincNet(args).to(self.device)
        # for x in self.network.state_dict().keys():
        #     # if isinstance(self.network.state_dict()[x], float):
        #     print(x, torch.max(self.network.state_dict()[x]), torch.min(self.network.state_dict()[x]))
        self.saved_model = \
            torch.load(args['sincnet_saved_model'], map_location=self.device)[
                'CNN_model_par']
        self.load_my_state_dict(self.saved_model)
        print(self.sincnet_params)
        # exit()
        # for i, param in enumerate(self.network.parameters()):
        # if name in self.sincnet_params:
        # self.network.state_dict()[name].requires_grad = False
        # if i <= 19:
        #     param.requires_grad = False
        # for x in self.network.state_dict().keys():
        #     # if isinstance(self.network.state_dict()[x], float):
        #     print(x, torch.max(self.network.state_dict()[x]), torch.min(self.network.state_dict()[x]))

        self.pos_weight = None
        self.loss_function = None
        self.learning_rate_decay = args.learning_rate_decay

        self.optimiser = optim.RMSprop(self.network.parameters(),
                                       lr=self.learning_rate,
                                       alpha=0.95,
                                       eps=1e-8)
        self.scheduler = torch.optim.lr_scheduler.ExponentialLR(
            self.optimiser, gamma=self.learning_rate_decay)

        self._min, self._max = float('inf'), -float('inf')

        if self.train_net:
            self.network.train()
            self.log_file = open(
                self.network_save_path + '/' + self.run_name + '.log', 'w')
            self.log_file.write(json.dumps(args))
        if self.test_net:
            print('Loading Network')
            self.network.load_state_dict(
                torch.load(self.network_restore_path,
                           map_location=self.device))
            self.network.eval()
            self.log_file = open(
                self.network_restore_path.replace('_40.pt', '.log'), 'a')
            print(
                '\n\n\n********************************************************',
                file=self.log_file)
            print('Testing Model - ', self.network_restore_path)
            print('Testing Model - ',
                  self.network_restore_path,
                  file=self.log_file)
            print('********************************************************',
                  file=self.log_file)

        self.writer = SummaryWriter(self.tensorboard_summary_path)
        print("Network config:\n", self.network)
        print("Network config:\n", self.network, file=self.log_file)

        self.batch_loss, self.batch_accuracy, self.uar = [], [], []

        print('Configs used:\n', json.dumps(args, indent=4))
        print('Configs used:\n',
              json.dumps(args, indent=4),
              file=self.log_file)
コード例 #4
0
ファイル: convnet_runner.py プロジェクト: ShreeshaN/AlcoAudio
    def __init__(self, args):
        self.run_name = args.run_name + '_' + str(time.time()).split('.')[0]
        self.current_run_basepath = args.network_metrics_basepath + '/' + self.run_name + '/'
        self.learning_rate = args.learning_rate
        self.epochs = args.epochs
        self.test_net = args.test_net
        self.train_net = args.train_net
        self.batch_size = args.batch_size
        self.num_classes = args.num_classes
        self.audio_basepath = args.audio_basepath
        self.train_data_file = args.train_data_file
        self.test_data_file = args.test_data_file
        self.data_read_path = args.data_save_path
        self.is_cuda_available = torch.cuda.is_available()
        self.display_interval = args.display_interval
        self.sampling_rate = args.sampling_rate
        self.sample_size_in_seconds = args.sample_size_in_seconds
        self.overlap = args.overlap

        self.network_metrics_basepath = args.network_metrics_basepath
        self.tensorboard_summary_path = self.current_run_basepath + args.tensorboard_summary_path
        self.network_save_path = self.current_run_basepath + args.network_save_path

        self.network_restore_path = args.network_restore_path

        self.device = torch.device("cuda" if self.is_cuda_available else "cpu")
        self.network_save_interval = args.network_save_interval
        self.normalise = args.normalise_while_training
        self.data_augment = args.data_augment
        self.dropout = args.dropout
        self.threshold = args.threshold
        self.debug_filename = self.current_run_basepath + '/' + args.debug_filename

        paths = [self.network_save_path, self.tensorboard_summary_path]
        file_utils.create_dirs(paths)

        self.network = ConvNet().to(self.device)
        self.pos_weight = None
        self.loss_function = None
        self.learning_rate_decay = args.learning_rate_decay

        self.optimiser = optim.AdamW(self.network.parameters(),
                                     lr=self.learning_rate)
        self.scheduler = torch.optim.lr_scheduler.ExponentialLR(
            self.optimiser, gamma=self.learning_rate_decay)

        self._min, self._max = float('inf'), -float('inf')

        if self.train_net:
            self.network.train()
            self.logger = Logger(name=self.run_name,
                                 log_path=self.network_save_path).get_logger()
            self.logger.info(str(json.dumps(args, indent=4)))
        if self.test_net:
            self.logger.info('Loading Network')
            self.network.load_state_dict(
                torch.load(self.network_restore_path,
                           map_location=self.device))
            self.network.eval()
            self.logger.info(
                '\n\n\n********************************************************'
            )
            self.logger.info(f'Testing Model - {self.network_restore_path}')
            self.logger.info(
                '********************************************************')

        self.writer = SummaryWriter(self.tensorboard_summary_path)
        self.logger.info(f"Network Architecture:\n,{self.network}")

        self.batch_loss, self.batch_accuracy, self.uar = [], [], []

        self.logger.info(f'Configs used:\n{json.dumps(args, indent=4)}')