コード例 #1
0
    def _build_confusion_network(self, sampled_da_items):
        confusion_net = DialogueActConfusionNetwork()
        for da_items, probs in sampled_da_items:
            for dai, prob in zip(da_items, probs):
                confusion_net.add_merge(prob, dai)

        return confusion_net
コード例 #2
0
ファイル: simple_asr_simulator.py プロジェクト: thanhlct/alex
    def _build_confusion_network(self, sampled_da_items):
        '''Build confusion network from a list containing DialgoueActItem and their observation probability.'''
        confusion_net = DialogueActConfusionNetwork()
        for da_items, probs in sampled_da_items:
            for dai, prob in zip(da_items, probs):
                confusion_net.add_merge(prob, dai)

        return confusion_net
コード例 #3
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_get_prob(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.2, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.1, DialogueActItem(dai='inform(food=russian)'))

        self.assertAlmostEqual(dacn._get_prob([0, 1, 1]), 0.2 * 0.3 * 0.9)
        self.assertAlmostEqual(dacn._get_prob([0, 0, 0]), 0.2 * 0.7 * 0.1)
コード例 #4
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_prune(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        # Russian food should be pruned.
        self.assertEqual(len(dacn), 3)
        dacn.prune()
        self.assertEqual(len(dacn), 2)
        self.assertTrue(not DialogueActItem(
            dai='inform(food=russian)') in dacn)
コード例 #5
0
ファイル: dddstate.py プロジェクト: kangliqiang/alex
    def context_resolution(self, user_da, system_da):
        """Resolves and converts meaning of some user dialogue acts
        given the context."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        if isinstance(system_da, DialogueAct):
            for system_dai in system_da:
                for prob, user_dai in user_da:
                    new_user_dai = None

                    if system_dai.dat == "confirm" and user_dai.dat == "affirm":
                        new_user_dai = DialogueActItem("inform",
                                                       system_dai.name,
                                                       system_dai.value)

                    elif system_dai.dat == "confirm" and user_dai.dat == "negate":
                        new_user_dai = DialogueActItem("deny", system_dai.name,
                                                       system_dai.value)

                    elif system_dai.dat == "request" and user_dai.dat == "inform" and \
                                    user_dai.name in self.ontology['context_resolution'] and \
                                    system_dai.name in self.ontology['context_resolution'][user_dai.name] and \
                                    user_dai.value == "dontcare":
                        new_user_dai = DialogueActItem("inform",
                                                       system_dai.name,
                                                       system_dai.value)

                    elif system_dai.dat == "request" and user_dai.dat == "inform" and \
                                    user_dai.name in self.ontology['context_resolution'] and \
                                    system_dai.name in self.ontology['context_resolution'][user_dai.name] and \
                                    self.ontology.slot_has_value(system_dai.name, user_dai.value):
                        new_user_dai = DialogueActItem("inform",
                                                       system_dai.name,
                                                       user_dai.value)

                    elif system_dai.dat == "request" and system_dai.name != "" and \
                                    user_dai.dat == "affirm" and self.ontology.slot_is_binary(system_dai.name):
                        new_user_dai = DialogueActItem("inform",
                                                       system_dai.name, "true")

                    elif system_dai.dat == "request" and system_dai.name != "" and \
                                    user_dai.dat == "negate" and self.ontology.slot_is_binary(system_dai.name):
                        new_user_dai = DialogueActItem("inform",
                                                       system_dai.name,
                                                       "false")

                    if new_user_dai:
                        new_user_da.add(prob, new_user_dai)

        old_user_da.extend(new_user_da)

        return old_user_da
コード例 #6
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_sort(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(1.0, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        dacn.sort()

        cn = list(dacn)
        self.assertEqual(cn[0][1], DialogueActItem(dai='inform(food=czech)'))
        self.assertEqual(cn[1][1], DialogueActItem(dai='inform(food=chinese)'))
        self.assertEqual(cn[2][1], DialogueActItem(dai='inform(food=russian)'))
コード例 #7
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_prune(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        # Russian food should be pruned.
        self.assertEqual(len(dacn), 3)
        dacn.prune()
        self.assertEqual(len(dacn), 2)
        self.assertTrue(not DialogueActItem(dai='inform(food=russian)') in dacn)
コード例 #8
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_add_merge(self):
        dai = DialogueActItem(dai='inform(food=chinese)')
        dacn = DialogueActConfusionNetwork()
        dacn.add_merge(0.5, dai, combine='add')
        self.assertEqual(dacn._get_prob([0]), 0.5)

        dacn.add_merge(0.5, dai, combine='add')
        self.assertEqual(dacn._get_prob([0]), 1.0)
コード例 #9
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_get_prob(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.2, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.1, DialogueActItem(dai='inform(food=russian)'))

        self.assertAlmostEqual(dacn._get_prob([0, 1, 1]), 0.2 * 0.3 * 0.9)
        self.assertAlmostEqual(dacn._get_prob([0, 0, 0]), 0.2 * 0.7 * 0.1)
コード例 #10
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_sort(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(1.0, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        dacn.sort()

        cn = list(dacn)
        self.assertEqual(cn[0][1], DialogueActItem(dai='inform(food=czech)'))
        self.assertEqual(cn[1][1], DialogueActItem(dai='inform(food=chinese)'))
        self.assertEqual(cn[2][1], DialogueActItem(dai='inform(food=russian)'))
コード例 #11
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_add_merge(self):
        dai = DialogueActItem(dai='inform(food=chinese)')
        dacn = DialogueActConfusionNetwork()
        dacn.add_merge(0.5, dai, combine='add')
        self.assertEqual(dacn._get_prob([0]), 0.5)

        dacn.add_merge(0.5, dai, combine='add')
        self.assertEqual(dacn._get_prob([0]), 1.0)
コード例 #12
0
ファイル: dddstate.py プロジェクト: UFAL-DSG/alex
    def _resolve_user_da_in_context(self, user_da, system_da):
        """Resolves and converts meaning of some user dialogue acts
        given the context."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        if isinstance(system_da, DialogueAct):
            for system_dai in system_da:
                for prob, user_dai in user_da:
                    new_user_dai = None

                    if system_dai.dat == "confirm" and user_dai.dat == "affirm":
                        new_user_dai = DialogueActItem("inform", system_dai.name, system_dai.value)

                    elif system_dai.dat == "confirm" and user_dai.dat == "negate":
                        new_user_dai = DialogueActItem("deny", system_dai.name, system_dai.value)

                    elif system_dai.dat == "request" and user_dai.dat == "inform" and \
                                    user_dai.name in self.ontology['context_resolution'] and \
                                    system_dai.name in self.ontology['context_resolution'][user_dai.name] and \
                                    user_dai.value == "dontcare":
                        new_user_dai = DialogueActItem("inform", system_dai.name, system_dai.value)

                    elif system_dai.dat == "request" and user_dai.dat == "inform" and \
                                    user_dai.name in self.ontology['context_resolution'] and \
                                    system_dai.name in self.ontology['context_resolution'][user_dai.name] and \
                                    self.ontology.slot_has_value(system_dai.name, user_dai.value):
                        new_user_dai = DialogueActItem("inform", system_dai.name, user_dai.value)

                    elif system_dai.dat == "request" and system_dai.name != "" and \
                                    user_dai.dat == "affirm" and self.ontology.slot_is_binary(system_dai.name):
                        new_user_dai = DialogueActItem("inform", system_dai.name, "true")

                    elif system_dai.dat == "request" and system_dai.name != "" and \
                                    user_dai.dat == "negate" and self.ontology.slot_is_binary(system_dai.name):
                        new_user_dai = DialogueActItem("inform", system_dai.name, "false")

                    if new_user_dai:
                        new_user_da.add(prob, new_user_dai)

        old_user_da.merge(new_user_da, combine='max')

        return old_user_da
コード例 #13
0
ファイル: dddstate.py プロジェクト: UFAL-DSG/alex
    def _infer_last_talked_about_slots(self, user_da, system_da):
        """This adds dialogue act items to support inference of the last slots the user talked about."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        colliding_slots = {}
        done_slots = set()

        for prob, user_dai in user_da:
            new_user_dais = []
            lta_tsvs = self.ontology.last_talked_about(user_dai.dat, user_dai.name, user_dai.value)

            for name, value in lta_tsvs:
                new_user_dais.append(DialogueActItem("inform", name, value))
                if name in done_slots:
                    if not name in colliding_slots:
                        colliding_slots[name] = set()
                    colliding_slots[name].add(value)
                else:
                    done_slots.add(name)

            if new_user_dais:
                for nudai in new_user_dais:
                    if not nudai in new_user_da:
                        new_user_da.add(prob, nudai)

        # In case of collisions, prefer the current last talked about values if it is one of the colliding values.
        # If there is a collision and the current last talked about value is not among the colliding values, do not
        # consider the colliding DA's at all.
        invalid_das = set()
        for prob, da in set(new_user_da):
            if da.name in colliding_slots and self[da.name].mpv() in colliding_slots[da.name]:
                if not da.value == self[da.name].mpv():
                    invalid_das.add(da)
            elif da.name in colliding_slots:
                invalid_das.add(da)

        for invalid_da in invalid_das:
            new_user_da.remove(invalid_da)

        old_user_da.merge(new_user_da, combine='max')

        return old_user_da
コード例 #14
0
ファイル: dddstate.py プロジェクト: AoJ/alex
    def last_talked_about(self, user_da, system_da):
        """This adds dialogue act items to support inference of the last slots the user talked about."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        for prob, user_dai in user_da:
            new_user_dais = []
            lta_tsvs = self.ontology.last_talked_about(user_dai.dat, user_dai.name, user_dai.value)

            for name, value in lta_tsvs:
                new_user_dais.append(DialogueActItem("inform", name, value))

            if new_user_dais:
                for nudai in new_user_dais:
                    new_user_da.add(prob, nudai)

        old_user_da.extend(new_user_da)

        return old_user_da
コード例 #15
0
ファイル: base.py プロジェクト: AoJ/alex
    def parse_nblist(self, obs, *args, **kwargs):
        """
        Parses an observation featuring an utterance n-best list using the
        parse_1_best method.

        Arguments:
            obs -- a dictionary of observations
                :: observation type -> observed value
                where observation type is one of values for `obs_type' used in
                `ft_props', and observed value is the corresponding observed
                value for the input
            args -- further positional arguments that should be passed to the
                `parse_1_best' method call
            kwargs -- further keyword arguments that should be passed to the
                `parse_1_best' method call

        """
        nblist = obs['utt_nbl']
        if len(nblist) == 0:
            return DialogueActConfusionNetwork()

        obs_wo_nblist = copy.deepcopy(obs)
        del obs_wo_nblist['utt_nbl']
        dacn_list = []
        for prob, utt in nblist:
            if "_other_" == utt:
                dacn = DialogueActConfusionNetwork()
                dacn.add(1.0, DialogueActItem("other"))
            elif "_silence_" == utt:
                dacn = DialogueActConfusionNetwork()
                dacn.add(1.0, DialogueActItem("silence"))
            else:
                obs_wo_nblist['utt'] = utt
                dacn = self.parse_1_best(obs_wo_nblist, *args, **kwargs)

            dacn_list.append((prob, dacn))

        dacn = merge_slu_confnets(dacn_list)
        dacn.prune()
        dacn.sort()

        return dacn
コード例 #16
0
ファイル: dddstate.py プロジェクト: tkraut/alex
    def last_talked_about(self, user_da, system_da):
        """This adds dialogue act items to support inference of the last slots the user talked about."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        for prob, user_dai in user_da:
            new_user_dais = []
            lta_tsvs = self.ontology.last_talked_about(user_dai.dat,
                                                       user_dai.name,
                                                       user_dai.value)

            for name, value in lta_tsvs:
                new_user_dais.append(DialogueActItem("inform", name, value))

            if new_user_dais:
                for nudai in new_user_dais:
                    new_user_da.add(prob, nudai)

        old_user_da.extend(new_user_da)

        return old_user_da
コード例 #17
0
    def test_get_platform_res_da(self):
        hdc_policy = self._build_policy()

        state = DeterministicDiscriminativeDialogueState(self.cfg, self.ontology)

        system_input = DialogueActConfusionNetwork()

        res = hdc_policy.get_da(state)

        user_input = DialogueActConfusionNetwork()
        user_input.add(1.0, DialogueActItem(dai='info(task=find_platform)'))
        user_input.add(1.0, DialogueActItem(dai='inform(from_stop=Praha)'))
        user_input.add(1.0, DialogueActItem(dai='inform(to_stop=Brno)'))

        state.update(user_input, system_input)
        res = hdc_policy.get_da(state)

        self.assert_('inform(not_supported)' in res)
コード例 #18
0
def main():

    # initialize tracker and state
    slots = ["food", "location"]
    tr = DSTCTracker(slots)
    state = DSTCState(slots)
    state.pprint()

    # try to update state with some information
    print '---'
    cn = DialogueActConfusionNetwork()
    cn.add(0.3, DialogueActItem("inform", "food", "chinese"))
    cn.add(0.1, DialogueActItem("inform", "food", "indian"))
    tr.update_state(state, cn)
    state.pprint()

    # try to deny some information
    print '---'
    cn.add(0.9, DialogueActItem("deny", "food", "chinese"))
    cn.add(0.1, DialogueActItem("deny", "food", "indian"))
    tr.update_state(state, cn)
    state.pprint()
コード例 #19
0
ファイル: dstc_tracker.py プロジェクト: AoJ/alex
def main():
    # initialize tracker and state
    slots = ["food", "location"]
    tr = DSTCTracker(slots)
    state = DSTCState(slots)
    state.pprint()

    # try to update state with some information
    print '---'
    cn = DialogueActConfusionNetwork()
    cn.add(0.3, DialogueActItem("inform", "food", "chinese"))
    cn.add(0.1, DialogueActItem("inform", "food", "indian"))
    tr.update_state(state, cn)
    state.pprint()

    # try to deny some information
    print '---'
    cn.add(0.9, DialogueActItem("deny", "food", "chinese"))
    cn.add(0.1, DialogueActItem("deny", "food", "indian"))
    tr.update_state(state, cn)
    state.pprint()
コード例 #20
0
ファイル: dddstate.py プロジェクト: zhangziliang04/alex
    def _infer_last_talked_about_slots(self, user_da, system_da):
        """This adds dialogue act items to support inference of the last slots the user talked about."""
        old_user_da = deepcopy(user_da)
        new_user_da = DialogueActConfusionNetwork()

        colliding_slots = {}
        done_slots = set()

        for prob, user_dai in user_da:
            new_user_dais = []
            lta_tsvs = self.ontology.last_talked_about(user_dai.dat,
                                                       user_dai.name,
                                                       user_dai.value)

            for name, value in lta_tsvs:
                new_user_dais.append(DialogueActItem("inform", name, value))
                if name in done_slots:
                    if not name in colliding_slots:
                        colliding_slots[name] = set()
                    colliding_slots[name].add(value)
                else:
                    done_slots.add(name)

            if new_user_dais:
                for nudai in new_user_dais:
                    if not nudai in new_user_da:
                        new_user_da.add(prob, nudai)

        # In case of collisions, prefer the current last talked about values if it is one of the colliding values.
        # If there is a collision and the current last talked about value is not among the colliding values, do not
        # consider the colliding DA's at all.
        invalid_das = set()
        for prob, da in set(new_user_da):
            if da.name in colliding_slots and self[
                    da.name].mpv() in colliding_slots[da.name]:
                if not da.value == self[da.name].mpv():
                    invalid_das.add(da)
            elif da.name in colliding_slots:
                invalid_das.add(da)

        for invalid_da in invalid_das:
            new_user_da.remove(invalid_da)

        old_user_da.merge(new_user_da, combine='max')

        return old_user_da
コード例 #21
0
    def test_switching_tasks(self):
        hdc_policy = self._build_policy()
        self.mox.StubOutWithMock(hdc_policy.weather, 'get_weather')
        self.mox.StubOutWithMock(hdc_policy, 'get_directions')

        hdc_policy.weather.get_weather(city=u'Praha',
                                       daily=False,
                                       lat=u'50.0755381',
                                       lon=u'14.4378005',
                                       time=None).AndReturn(None)
        hdc_policy.get_directions(mox.IgnoreArg(),
                                  check_conflict=True).AndReturn([DialogueActItem(dai="inform(time=10:00)")])

        self.mox.ReplayAll()

        state = DeterministicDiscriminativeDialogueState(self.cfg, self.ontology)

        system_input = DialogueActConfusionNetwork()

        res = hdc_policy.get_da(state)

        # User says she wants weather so the task should be weather.
        user_input = self._build_user_input("inform(task=weather)")
        state.update(user_input, system_input)
        res = hdc_policy.get_da(state)
        self.assertEqual(state['lta_task'].mpv(), 'weather')

        # User wants to find a connection so the task should be find_connection.
        user_input = self._build_user_input(u"inform(task=find_connection)",
                                            u"inform(to_stop=Malostranská)",
                                            u"inform(from_stop=Anděl)")
        state.update(user_input, system_input)
        res = hdc_policy.get_da(state)
        self.assertEqual(state['lta_task'].mpv(), 'find_connection')

        self.mox.VerifyAll()
コード例 #22
0
ファイル: base.py プロジェクト: tkraut/alex
    def parse_nblist(self, obs, *args, **kwargs):
        """
        Parses an observation featuring an utterance n-best list using the
        parse_1_best method.

        Arguments:
            obs -- a dictionary of observations
                :: observation type -> observed value
                where observation type is one of values for `obs_type' used in
                `ft_props', and observed value is the corresponding observed
                value for the input
            args -- further positional arguments that should be passed to the
                `parse_1_best' method call
            kwargs -- further keyword arguments that should be passed to the
                `parse_1_best' method call

        """
        nblist = obs['utt_nbl']
        if len(nblist) == 0:
            return DialogueActConfusionNetwork()

        obs_wo_nblist = copy.deepcopy(obs)
        del obs_wo_nblist['utt_nbl']
        dacn_list = []
        for prob, utt in nblist:
            if "_other_" == utt:
                dacn = DialogueActConfusionNetwork()
                dacn.add(1.0, DialogueActItem("other"))
            elif "_silence_" == utt:
                dacn = DialogueActConfusionNetwork()
                dacn.add(1.0, DialogueActItem("silence"))
            else:
                obs_wo_nblist['utt'] = utt
                dacn = self.parse_1_best(obs_wo_nblist, *args, **kwargs)

            dacn_list.append((prob, dacn))

        dacn = merge_slu_confnets(dacn_list)
        dacn.prune()
        dacn.sort()

        return dacn
コード例 #23
0
ファイル: test_sessionlogger.py プロジェクト: AoJ/alex
    def test_session_logger(self):
        cfg = Config.load_configs(config=CONFIG_DICT, use_default=False)

        sl = SessionLogger()

        # test 3 calls at once
        for i in range(3):
            sess_dir = "./%d" % i
            if not os.path.isdir(sess_dir):
                os.mkdir(sess_dir)
            sl.session_start(sess_dir)
            sl.config('config = ' + unicode(cfg))
            sl.header(cfg['Logging']["system_name"], cfg['Logging']["version"])
            sl.input_source("voip")

            sl.dialogue_rec_start(None, "both_complete_dialogue.wav")
            sl.dialogue_rec_start("system", "system_complete_dialogue.wav")
            sl.dialogue_rec_start("user", "user_complete_dialogue.wav")
            sl.dialogue_rec_end("both_complete_dialogue.wav")
            sl.dialogue_rec_end("system_complete_dialogue.wav")
            sl.dialogue_rec_end("user_complete_dialogue.wav")

            sl.turn("system")
            sl.dialogue_act("system", "hello()")
            sl.text("system", "Hello.")
            sl.rec_start("system", "system1.wav")
            sl.rec_end("system1.wav")

            sl.turn("user")
            sl.rec_start("user", "user1.wav")
            sl.rec_end("user1.wav")

            A1, A2, A3 = 0.90, 0.05, 0.05
            B1, B2, B3 = 0.70, 0.20, 0.10
            C1, C2, C3 = 0.80, 0.10, 0.10

            asr_confnet = UtteranceConfusionNetwork()
            asr_confnet.add([[A1, "want"], [A2, "has"], [A3, 'ehm']])
            asr_confnet.add([[B1, "Chinese"],  [B2, "English"], [B3, 'cheap']])
            asr_confnet.add([[C1, "restaurant"],  [C2, "pub"],   [C3, 'hotel']])
            asr_confnet.merge()
            asr_confnet.normalise()
            asr_confnet.sort()

            asr_nblist = asr_confnet.get_utterance_nblist()

            sl.asr("user", "user1.wav", asr_nblist, asr_confnet)

            slu_confnet = DialogueActConfusionNetwork()
            slu_confnet.add(0.7, DialogueActItem('hello'))
            slu_confnet.add(0.6, DialogueActItem('thankyou'))
            slu_confnet.add(0.4, DialogueActItem('restart'))
            slu_confnet.add(0.1, DialogueActItem('bye'))
            slu_confnet.merge()
            slu_confnet.normalise()
            slu_confnet.sort()

            slu_nblist = slu_confnet.get_da_nblist()

            sl.slu("user", "user1.wav", slu_nblist, slu_confnet)

            sl.turn("system")
            sl.dialogue_act("system", "thankyou()")
            sl.text("system", "Thank you.", cost = 1.0)
            sl.rec_start("system", "system2.wav")
            sl.rec_end("system2.wav")
            sl.barge_in("system", tts_time = True)

            sl.turn("user")
            sl.rec_start("user", "user2.wav")
            sl.rec_end("user2.wav")
            sl.hangup("user")
コード例 #24
0
ファイル: test_sessionlogger.py プロジェクト: henrypig/alex-1
    def test_session_logger(self):
        cfg = Config.load_configs(config=CONFIG_DICT, use_default=False)

        sl = SessionLogger()

        # test 3 calls at once
        for i in range(3):
            sess_dir = "./%d" % i
            if not os.path.isdir(sess_dir):
                os.mkdir(sess_dir)
            sl.session_start(sess_dir)
            sl.config('config = ' + unicode(cfg))
            sl.header(cfg['Logging']["system_name"], cfg['Logging']["version"])
            sl.input_source("voip")

            sl.dialogue_rec_start(None, "both_complete_dialogue.wav")
            sl.dialogue_rec_start("system", "system_complete_dialogue.wav")
            sl.dialogue_rec_start("user", "user_complete_dialogue.wav")
            sl.dialogue_rec_end("both_complete_dialogue.wav")
            sl.dialogue_rec_end("system_complete_dialogue.wav")
            sl.dialogue_rec_end("user_complete_dialogue.wav")

            sl.turn("system")
            sl.dialogue_act("system", "hello()")
            sl.text("system", "Hello.")
            sl.rec_start("system", "system1.wav")
            sl.rec_end("system1.wav")

            sl.turn("user")
            sl.rec_start("user", "user1.wav")
            sl.rec_end("user1.wav")

            A1, A2, A3 = 0.90, 0.05, 0.05
            B1, B2, B3 = 0.70, 0.20, 0.10
            C1, C2, C3 = 0.80, 0.10, 0.10

            asr_confnet = UtteranceConfusionNetwork()
            asr_confnet.add([[A1, "want"], [A2, "has"], [A3, 'ehm']])
            asr_confnet.add([[B1, "Chinese"], [B2, "English"], [B3, 'cheap']])
            asr_confnet.add([[C1, "restaurant"], [C2, "pub"], [C3, 'hotel']])
            asr_confnet.merge()
            asr_confnet.normalise()
            asr_confnet.sort()

            asr_nblist = asr_confnet.get_utterance_nblist()

            sl.asr("user", "user1.wav", asr_nblist, asr_confnet)

            slu_confnet = DialogueActConfusionNetwork()
            slu_confnet.add(0.7, DialogueActItem('hello'))
            slu_confnet.add(0.6, DialogueActItem('thankyou'))
            slu_confnet.add(0.4, DialogueActItem('restart'))
            slu_confnet.add(0.1, DialogueActItem('bye'))
            slu_confnet.merge()
            slu_confnet.normalise()
            slu_confnet.sort()

            slu_nblist = slu_confnet.get_da_nblist()

            sl.slu("user", "user1.wav", slu_nblist, slu_confnet)

            sl.turn("system")
            sl.dialogue_act("system", "thankyou()")
            sl.text("system", "Thank you.", cost=1.0)
            sl.rec_start("system", "system2.wav")
            sl.rec_end("system2.wav")
            sl.barge_in("system", tts_time=True)

            sl.turn("user")
            sl.rec_start("user", "user2.wav")
            sl.rec_end("user2.wav")
            sl.hangup("user")
コード例 #25
0
    def test_merge_slu_confnets(self):
        confnet1 = DialogueActConfusionNetwork()
        confnet1.add(0.7, DialogueActItem('hello'))
        confnet1.add(0.2, DialogueActItem('bye'))

        confnet2 = DialogueActConfusionNetwork()
        confnet2.add(0.6, DialogueActItem('hello'))
        confnet2.add(0.3, DialogueActItem('restart'))

        confnets = [[0.7, confnet1], [0.3, confnet2]]

        merged_confnets = merge_slu_confnets(confnets)

        correct_merged_confnet = DialogueActConfusionNetwork()
        correct_merged_confnet.add_merge(0.7 * 0.7,
                                         DialogueActItem('hello'),
                                         combine='add')
        correct_merged_confnet.add_merge(0.7 * 0.2,
                                         DialogueActItem('bye'),
                                         combine='add')
        correct_merged_confnet.add_merge(0.3 * 0.6,
                                         DialogueActItem('hello'),
                                         combine='add')
        correct_merged_confnet.add_merge(0.3 * 0.3,
                                         DialogueActItem('restart'),
                                         combine='add')

        s = []
        s.append("")
        s.append("Merged confnets:")
        s.append(unicode(merged_confnets))
        s.append("")
        s.append("Correct merged results:")
        s.append(unicode(correct_merged_confnet))
        s.append("")
        print '\n'.join(s)

        self.assertEqual(unicode(merged_confnets),
                         unicode(correct_merged_confnet))
コード例 #26
0
ファイル: pruledm.py プロジェクト: AoJ/alex
def main():
    from alex.utils.config import Config
    from alex.utils.caminfodb import CamInfoDb

    # This implicitly loads also the default config.
    cfg = Config.load_configs(['resources/lz.cfg'], project_root=True)

    db_cfg = cfg['DM']["PUfalRuleDM"]['db_cfg']  # database provider
    db = CamInfoDb(db_cfg)

    pdm = PRuleDM(cfg, db)
    pdm.new_dialogue()
    pdm.da_out()

    # user's input
    cn = DialogueActConfusionNetwork()
    cn.add(0.7, DialogueActItem(dai="inform(food=chinese)"))
    cn.add(0.2, DialogueActItem(dai="inform(food=indian)"))
    cn.add(0.5, DialogueActItem(dai="inform(food=chinese)"))
    cn.add(0.1, DialogueActItem(dai="inform(food=czech)"))
    cn.add(0.1, DialogueActItem(dai="confirm(food=czech)"))
    cn.add(0.6, DialogueActItem(dai="request(phone)"))
    cn.add(0.3, DialogueActItem(dai="reset()"))
    cn.add(0.3, DialogueActItem(dai="asdf()"))
    cn.add(0.3, DialogueActItem(dai="reset()"))
    print cn
    pdm.da_in(cn)
    pdm.da_out()

    cn = DialogueActConfusionNetwork()
    cn.add(0.99, DialogueActItem(dai="confirm(food=indian)"))
    print cn
    pdm.da_in(cn)
    pdm.da_out()

    cn = DialogueActConfusionNetwork()
    cn.add(0.77, DialogueActItem(dai="reqalts()"))
    print cn
    pdm.da_in(cn)
    pdm.da_out()

    cn = DialogueActConfusionNetwork()
    cn.add(0.77, DialogueActItem(dai="reqalts()"))
    print cn
    pdm.da_in(cn)
    pdm.da_out()

    cn = DialogueActConfusionNetwork()
    cn.add(0.99, DialogueActItem(dai="confirm(food=indian)"))
    print cn
    pdm.da_in(cn)
    pdm.da_out()

    cn = DialogueActConfusionNetwork()
    cn.add(0.99, DialogueActItem(dai="request(name)"))
    cn.add(0.99, DialogueActItem(dai="request(food)"))
    print cn
    pdm.da_in(cn)
    pdm.da_out()

    cn = DialogueActConfusionNetwork()
    cn.add(0.99, DialogueActItem(dai="bye()"))
    print cn
    pdm.da_in(cn)
    pdm.da_out()
コード例 #27
0
    def parse_X(self, utterance, verbose=False):
        if verbose:
            print '=' * 120
            print 'Parsing X'
            print '-' * 120
            print unicode(utterance)

        if self.preprocessing:
            utterance = self.preprocessing.normalise(utterance)
            utterance_fvcs = self.get_fvc(utterance)

        if verbose:
            print unicode(utterance)
            print unicode(utterance_fvcs)

        da_confnet = DialogueActConfusionNetwork()
        for clser in self.trained_classifiers:
            if verbose:
                print "Using classifier: ", unicode(clser)

            if self.parsed_classifiers[clser].value and self.parsed_classifiers[
                    clser].value.startswith('CL_'):
                # process abstracted classifiers

                for f, v, c in utterance_fvcs:
                    cc = "CL_" + c.upper()

                    if self.parsed_classifiers[clser].value == cc:
                        #print clser, f, v, c

                        classifiers_features = self.get_features(
                            utterance, (f, v, cc), utterance_fvcs)
                        classifiers_inputs = np.zeros(
                            (1, len(self.classifiers_features_mapping[clser])))
                        classifiers_inputs[
                            0] = classifiers_features.get_feature_vector(
                                self.classifiers_features_mapping[clser])

                        #if verbose:
                        #    print classifiers_features
                        #    print self.classifiers_features_mapping[clser]

                        p = self.trained_classifiers[clser].predict_proba(
                            classifiers_inputs)

                        if verbose:
                            print '  Probability:', p

                        dai = DialogueActItem(
                            self.parsed_classifiers[clser].dat,
                            self.parsed_classifiers[clser].name, v)
                        da_confnet.add_merge(p[0][1], dai, combine='max')
            else:
                # process concrete classifiers
                classifiers_features = self.get_features(
                    utterance, (None, None, None), utterance_fvcs)
                classifiers_inputs = np.zeros(
                    (1, len(self.classifiers_features_mapping[clser])))
                classifiers_inputs[
                    0] = classifiers_features.get_feature_vector(
                        self.classifiers_features_mapping[clser])

                #if verbose:
                #    print classifiers_features
                #    print self.classifiers_features_mapping[clser]

                p = self.trained_classifiers[clser].predict_proba(
                    classifiers_inputs)

                if verbose:
                    print '  Probability:', p

                dai = self.parsed_classifiers[clser]
                da_confnet.add_merge(p[0][1], dai, combine='max')

        da_confnet.sort().prune()

        return da_confnet
コード例 #28
0
ファイル: hdc_slu.py プロジェクト: beka-evature/alex
    def parse_1_best(self, obs, verbose=False, *args, **kwargs):
        """Parse an utterance into a dialogue act.

        :rtype DialogueActConfusionNetwork
        """

        utterance = obs['utt']

        if isinstance(utterance, UtteranceHyp):
            # Parse just the utterance and ignore the confidence score.
            utterance = utterance.utterance

        if verbose:
            print 'Parsing utterance "{utt}".'.format(utt=utterance)

        res_cn = DialogueActConfusionNetwork()

        dict_da = self.utt2da.get(unicode(utterance), None)
        if dict_da:
            for dai in DialogueAct(dict_da):
                res_cn.add(1.0, dai)
            return res_cn

        utterance = self.preprocessing.normalise_utterance(utterance)
        abutterance, category_labels = self.abstract_utterance(utterance)

        if verbose:
            print 'After preprocessing: "{utt}".'.format(utt=abutterance)
            print category_labels

        self.parse_non_speech_events(utterance, res_cn)

        utterance = utterance.replace_all(['_noise_'], '').replace_all(['_laugh_'], '').replace_all(['_ehm_hmm_'], '').replace_all(['_inhale_'], '')
        abutterance = abutterance.replace_all(['_noise_'], '').replace_all(['_laugh_'], '').replace_all(['_ehm_hmm_'], '').replace_all(['_inhale_'], '')

        abutterance = self.handle_false_abstractions(abutterance)
        category_labels.add('CITY')
        category_labels.add('VEHICLE')
        category_labels.add('NUMBER')

        if len(res_cn) == 0:
            if 'STOP' in category_labels:
                self.parse_stop(abutterance, res_cn)
            if 'CITY' in category_labels:
                self.parse_city(abutterance, res_cn)
            if 'NUMBER' in category_labels:
                self.parse_number(abutterance)
                if any([word.startswith("TIME") for word in abutterance]):
                    category_labels.add('TIME')
            if 'TIME' in category_labels:
                self.parse_time(abutterance, res_cn)
            if 'DATE_REL' in category_labels:
                self.parse_date_rel(abutterance, res_cn)
            if 'AMPM' in category_labels:
                self.parse_ampm(abutterance, res_cn)
            if 'VEHICLE' in category_labels:
                self.parse_vehicle(abutterance, res_cn)
            if 'TASK' in category_labels:
                self.parse_task(abutterance, res_cn)

            self.parse_meta(utterance, res_cn)

        res_cn.merge()

        return res_cn
コード例 #29
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_get_best_nonnull_da(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.2, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.1, DialogueActItem(dai='inform(food=russian)'))

        da_nn = dacn.get_best_nonnull_da()
        self.assertEqual(len(da_nn), 1)
        self.assertEqual(da_nn.dais[0],
                         DialogueActItem(dai='inform(food=czech)'))

        dacn = DialogueActConfusionNetwork()
        dacn.add(0.075, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='null()'))
        dacn.add(0.15, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.075, DialogueActItem(dai='inform(food=russian)'))

        da_nn = dacn.get_best_nonnull_da()
        self.assertEqual(len(da_nn), 1)

        self.assertEqual(da_nn.dais[0],
                         DialogueActItem(dai='inform(food=czech)'))
コード例 #30
0
    def _build_user_input(self, *args):
        user_input = DialogueActConfusionNetwork()
        for arg in args:
            user_input.add(1.0, DialogueActItem(dai=arg))

        return user_input
コード例 #31
0
ファイル: dm.py プロジェクト: AoJ/alex
    def process_pending_commands(self):
        """Process all pending commands.

        Available commands:
          stop() - stop processing and exit the process
          flush() - flush input buffers.
            Now it only flushes the input connection.

        Return True if the process should terminate.
        """

        while self.commands.poll():
            command = self.commands.recv()
            if self.cfg['DM']['debug']:
                self.cfg['Logging']['system_logger'].debug(command)

            if isinstance(command, Command):
                if command.parsed['__name__'] == 'stop':
                    return True

                if command.parsed['__name__'] == 'flush':
                    # discard all data in in input buffers
                    while self.slu_hypotheses_in.poll():
                        data_in = self.slu_hypotheses_in.recv()

                    self.dm.end_dialogue()

                    self.commands.send(Command("flushed()", 'DM', 'HUB'))
                    
                    return False

                if command.parsed['__name__'] == 'new_dialogue':
                    self.epilogue_state = None
                    self.dm.new_dialogue()

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    # I should generate the first DM output
                    da = self.dm.da_out()

                    if self.cfg['DM']['debug']:
                        s = []
                        s.append("DM Output")
                        s.append("-"*60)
                        s.append(unicode(da))
                        s.append("")
                        s = '\n'.join(s)
                        self.cfg['Logging']['system_logger'].debug(s)

                    self.cfg['Logging']['session_logger'].dialogue_act("system", da)

                    self.commands.send(DMDA(da, 'DM', 'HUB'))

                    return False

                if command.parsed['__name__'] == 'end_dialogue':
                    self.dm.end_dialogue()
                    return False

                if command.parsed['__name__'] == 'timeout':
                    # check whether there is a looong silence
                    # if yes then inform the DM

                    silence_time = command.parsed['silence_time']

                    cn = DialogueActConfusionNetwork()
                    cn.add(1.0, DialogueActItem('silence','time', silence_time))

                    # process the input DA
                    self.dm.da_in(cn)

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    if self.epilogue_state and float(silence_time) > 5.0:
                        # a user was silent for too long, therefore hung up
                        self.cfg['Logging']['session_logger'].dialogue_act("system", self.epilogue_da)
                        self.commands.send(DMDA(self.epilogue_da, 'DM', 'HUB'))
                        self.commands.send(Command('hangup()', 'DM', 'HUB'))
                    else:
                        da = self.dm.da_out()

                        if self.cfg['DM']['debug']:
                            s = []
                            s.append("DM Output")
                            s.append("-"*60)
                            s.append(unicode(da))
                            s.append("")
                            s = '\n'.join(s)
                            self.cfg['Logging']['system_logger'].debug(s)

                        self.cfg['Logging']['session_logger'].dialogue_act("system", da)
                        self.commands.send(DMDA(da, 'DM', 'HUB'))

                        if da.has_dat("bye"):
                            self.commands.send(Command('hangup()', 'DM', 'HUB'))

                    return False

        return False
コード例 #32
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_get_da_nblist(self):
        # Simple case with one good hypothesis.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.05, DialogueActItem(dai='inform(food=russian)'))

        nblist = dacn.get_da_nblist()
        best_da = nblist.get_best_da()
        expected_da = DialogueAct(da_str='inform(food=czech)')
        self.assertEqual(best_da, expected_da)

        # More good hypotheses
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        nblist = dacn.get_da_nblist()
        best_da = nblist.get_best_da()
        expected_da = DialogueAct(da_str='inform(food=czech)&inform(food=russian)')
        self.assertEqual(best_da, expected_da)
コード例 #33
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_get_da_nblist(self):
        # Simple case with one good hypothesis.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.05, DialogueActItem(dai='inform(food=russian)'))

        nblist = dacn.get_da_nblist()
        best_da = nblist.get_best_da()
        expected_da = DialogueAct(da_str='inform(food=czech)')
        self.assertEqual(best_da, expected_da)

        # More good hypotheses
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        nblist = dacn.get_da_nblist()
        best_da = nblist.get_best_da()
        expected_da = DialogueAct(
            da_str='inform(food=czech)&inform(food=russian)')
        self.assertEqual(best_da, expected_da)
コード例 #34
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_get_best_da_hyp(self):
        # Test case when only one dai should be included in the hyp.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.2, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.1, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(use_log=False)
        self.assertAlmostEqual(best_hyp.prob, 0.8 * 0.7 * 0.9)
        self.assertEqual(len(best_hyp.da), 1)

        # Test case when 2 dais should be included in the hyp.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(use_log=False)
        self.assertAlmostEqual(best_hyp.prob, 0.9 * 0.7 * 0.9)
        self.assertEqual(len(best_hyp.da), 2)

        # Test the case with logarithms.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(use_log=True)
        self.assertAlmostEqual(best_hyp.prob, math.log(0.9 * 0.7 * 0.9))
        self.assertEqual(len(best_hyp.da), 2)

        # Test the case with manual thresholds.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(
            use_log=True, threshold=0.1, thresholds={
                DialogueActItem(dai='inform(food=chinese)'): 0.5,
                DialogueActItem(dai='inform(food=czech)'): 0.9,
                DialogueActItem(dai='inform(food=russian)'): 0.5
            })
        # Test food=czech should NOT be included.
        self.assertAlmostEqual(best_hyp.prob, math.log(0.9 * 0.3 * 0.9))
        self.assertEqual(len(best_hyp.da), 1)
        self.assertTrue(not DialogueActItem(dai='inform(food=czech)') in best_hyp.da)

        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(
            use_log=True, threshold=0.1, thresholds={
                DialogueActItem(dai='inform(food=chinese)'): 0.5,
                DialogueActItem(dai='inform(food=czech)'): 0.5,
                DialogueActItem(dai='inform(food=russian)'): 0.5
            })
        # Test food=czech should be included.
        self.assertAlmostEqual(best_hyp.prob, math.log(0.9 * 0.7 * 0.9))
        self.assertEqual(len(best_hyp.da), 2)
        self.assertTrue(DialogueActItem(dai='inform(food=czech)') in best_hyp.da)
コード例 #35
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_get_best_nonnull_da(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.2, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.1, DialogueActItem(dai='inform(food=russian)'))

        da_nn = dacn.get_best_nonnull_da()
        self.assertEqual(len(da_nn), 1)
        self.assertEqual(da_nn.dais[0], DialogueActItem(dai='inform(food=czech)'))

        dacn = DialogueActConfusionNetwork()
        dacn.add(0.075, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='null()'))
        dacn.add(0.15, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.075, DialogueActItem(dai='inform(food=russian)'))

        da_nn = dacn.get_best_nonnull_da()
        self.assertEqual(len(da_nn), 1)

        self.assertEqual(da_nn.dais[0], DialogueActItem(dai='inform(food=czech)'))
コード例 #36
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_merge(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        dacn.merge(dacn, combine='max')

        # Russian food should be pruned.
        dacn.sort().prune()
        self.assertTrue(not DialogueActItem(
            dai='inform(food=russian)') in dacn)
コード例 #37
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_merge_slu_confnets(self):
        confnet1 = DialogueActConfusionNetwork()
        confnet1.add(0.7, DialogueActItem('hello'))
        confnet1.add(0.2, DialogueActItem('bye'))

        confnet2 = DialogueActConfusionNetwork()
        confnet2.add(0.6, DialogueActItem('hello'))
        confnet2.add(0.3, DialogueActItem('restart'))

        confnets = [[0.7, confnet1], [0.3, confnet2]]

        merged_confnets = merge_slu_confnets(confnets)

        correct_merged_confnet = DialogueActConfusionNetwork()
        correct_merged_confnet.add_merge(0.7 * 0.7, DialogueActItem('hello'),
                                         combine='add')
        correct_merged_confnet.add_merge(0.7 * 0.2, DialogueActItem('bye'),
                                         combine='add')
        correct_merged_confnet.add_merge(0.3 * 0.6, DialogueActItem('hello'),
                                         combine='add')
        correct_merged_confnet.add_merge(0.3 * 0.3, DialogueActItem('restart'),
                                         combine='add')

        s = []
        s.append("")
        s.append("Merged confnets:")
        s.append(unicode(merged_confnets))
        s.append("")
        s.append("Correct merged results:")
        s.append(unicode(correct_merged_confnet))
        s.append("")

        self.assertEqual(unicode(merged_confnets), unicode(correct_merged_confnet))
コード例 #38
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
    def test_get_best_da_hyp(self):
        # Test case when only one dai should be included in the hyp.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.2, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.1, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(use_log=False)
        self.assertAlmostEqual(best_hyp.prob, 0.8 * 0.7 * 0.9)
        self.assertEqual(len(best_hyp.da), 1)

        # Test case when 2 dais should be included in the hyp.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(use_log=False)
        self.assertAlmostEqual(best_hyp.prob, 0.9 * 0.7 * 0.9)
        self.assertEqual(len(best_hyp.da), 2)

        # Test the case with logarithms.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(use_log=True)
        self.assertAlmostEqual(best_hyp.prob, math.log(0.9 * 0.7 * 0.9))
        self.assertEqual(len(best_hyp.da), 2)

        # Test the case with manual thresholds.
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(
            use_log=True,
            threshold=0.1,
            thresholds={
                DialogueActItem(dai='inform(food=chinese)'): 0.5,
                DialogueActItem(dai='inform(food=czech)'): 0.9,
                DialogueActItem(dai='inform(food=russian)'): 0.5
            })
        # Test food=czech should NOT be included.
        self.assertAlmostEqual(best_hyp.prob, math.log(0.9 * 0.3 * 0.9))
        self.assertEqual(len(best_hyp.da), 1)
        self.assertTrue(not DialogueActItem(
            dai='inform(food=czech)') in best_hyp.da)

        dacn = DialogueActConfusionNetwork()
        dacn.add(0.1, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.7, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=russian)'))

        best_hyp = dacn.get_best_da_hyp(
            use_log=True,
            threshold=0.1,
            thresholds={
                DialogueActItem(dai='inform(food=chinese)'): 0.5,
                DialogueActItem(dai='inform(food=czech)'): 0.5,
                DialogueActItem(dai='inform(food=russian)'): 0.5
            })
        # Test food=czech should be included.
        self.assertAlmostEqual(best_hyp.prob, math.log(0.9 * 0.7 * 0.9))
        self.assertEqual(len(best_hyp.da), 2)
        self.assertTrue(
            DialogueActItem(dai='inform(food=czech)') in best_hyp.da)
コード例 #39
0
ファイル: hdc_slu.py プロジェクト: elnaaz/alex
    def parse_1_best(self, obs, verbose=False):
        """Parse an utterance into a dialogue act."""
        utterance = obs['utt']

        if isinstance(utterance, UtteranceHyp):
            # Parse just the utterance and ignore the confidence score.
            utterance = utterance.utterance

        # print 'Parsing utterance "{utt}".'.format(utt=utterance)
        if verbose:
            print 'Parsing utterance "{utt}".'.format(utt=utterance)

        if self.preprocessing:
            # the text normalisation
            utterance = self.preprocessing.normalise_utterance(utterance)

            abutterance, category_labels = self.abstract_utterance(utterance)

            if verbose:
                print 'After preprocessing: "{utt}".'.format(utt=abutterance)
                print category_labels
        else:
            category_labels = dict()

        # handle false positive alarms of abstraction
        abutterance = abutterance.replace(('STOP=Metra',), ('metra',))
        abutterance = abutterance.replace(('STOP=Nádraží',), ('nádraží',))
        abutterance = abutterance.replace(('STOP=SME',), ('sme',))
        abutterance = abutterance.replace(('STOP=Bílá Hora', 'STOP=Železniční stanice',), ('STOP=Bílá Hora', 'železniční stanice',))

        abutterance = abutterance.replace(('TIME=now','bych', 'chtěl'), ('teď', 'bych', 'chtěl'))
        abutterance = abutterance.replace(('STOP=Čím','se'), ('čím', 'se',))
        abutterance = abutterance.replace(('STOP=Lužin','STOP=Na Chmelnici',), ('STOP=Lužin','na','STOP=Chmelnici',))
        abutterance = abutterance.replace(('STOP=Konečná','zastávka'), ('konečná', 'zastávka',))
        abutterance = abutterance.replace(('STOP=Konečná','STOP=Anděl'), ('konečná', 'STOP=Anděl',))
        abutterance = abutterance.replace(('STOP=Konečná stanice','STOP=Ládví'), ('konečná', 'stanice', 'STOP=Ládví',))
        abutterance = abutterance.replace(('STOP=Výstupní', 'stanice', 'je'), ('výstupní', 'stanice', 'je'))
        abutterance = abutterance.replace(('STOP=Nová','jiné'), ('nové', 'jiné',))
        abutterance = abutterance.replace(('STOP=Nová','spojení'), ('nové', 'spojení',))
        abutterance = abutterance.replace(('STOP=Nová','zadání'), ('nové', 'zadání',))
        abutterance = abutterance.replace(('STOP=Nová','TASK=find_connection'), ('nový', 'TASK=find_connection',))
        abutterance = abutterance.replace(('z','CITY=Liberk',), ('z', 'CITY=Liberec',))
        abutterance = abutterance.replace(('do','CITY=Liberk',), ('do', 'CITY=Liberec',))
        abutterance = abutterance.replace(('pauza','hrozně','STOP=Dlouhá',), ('pauza','hrozně','dlouhá',))
        abutterance = abutterance.replace(('v','STOP=Praga',), ('v', 'CITY=Praha',))
        abutterance = abutterance.replace(('na','STOP=Praga',), ('na', 'CITY=Praha',))
        abutterance = abutterance.replace(('po','STOP=Praga', 'ale'), ('po', 'CITY=Praha',))
        abutterance = abutterance.replace(('jsem','v','STOP=Metra',), ('jsem', 'v', 'VEHICLE=metro',))
        category_labels.add('CITY')
        category_labels.add('VEHICLE')

        # print 'After preprocessing: "{utt}".'.format(utt=abutterance)
        # print category_labels

        res_cn = DialogueActConfusionNetwork()

        self.parse_non_speech_events(utterance, res_cn)

        if len(res_cn) == 0:
            # remove non speech events, they are not relevant for SLU
            abutterance = abutterance.replace_all('_noise_', '').replace_all('_laugh_', '').replace_all('_ehm_hmm_', '').replace_all('_inhale_', '')

            if 'STOP' in category_labels:
                self.parse_stop(abutterance, res_cn)
            if 'CITY' in category_labels:
                self.parse_city(abutterance, res_cn)
            if 'TIME' in category_labels:
                self.parse_time(abutterance, res_cn)
            if 'DATE_REL' in category_labels:
                self.parse_date_rel(abutterance, res_cn)
            if 'AMPM' in category_labels:
                self.parse_ampm(abutterance, res_cn)
            if 'VEHICLE' in category_labels:
                self.parse_vehicle(abutterance, res_cn)
            if 'TASK' in category_labels:
                self.parse_task(abutterance, res_cn)

            self.parse_meta(utterance, res_cn)

        res_cn.merge()

        return res_cn
コード例 #40
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
 def test_normalise(self):
     dacn = DialogueActConfusionNetwork()
     dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
     dacn.add(1.9, DialogueActItem(dai='inform(food=czech)'))
     dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))
     self.assertRaises(ConfusionNetworkException, dacn.normalise)
コード例 #41
0
    def parse_1_best(self, obs, verbose=False):
        """Parse an utterance into a dialogue act."""
        utterance = obs['utt']

        if isinstance(utterance, UtteranceHyp):
            # Parse just the utterance and ignore the confidence score.
            utterance = utterance.utterance

        # print 'Parsing utterance "{utt}".'.format(utt=utterance)
        if verbose:
            print 'Parsing utterance "{utt}".'.format(utt=utterance)

        if self.preprocessing:
            # the text normalisation
            utterance = self.preprocessing.normalise_utterance(utterance)

            abutterance, category_labels = self.abstract_utterance(utterance)

            if verbose:
                print 'After preprocessing: "{utt}".'.format(utt=abutterance)
                print category_labels
        else:
            category_labels = dict()

        # handle false positive alarms of abstraction
        abutterance = abutterance.replace(('STOP=Metra', ), ('metra', ))
        abutterance = abutterance.replace(('STOP=Nádraží', ), ('nádraží', ))
        abutterance = abutterance.replace(('STOP=SME', ), ('sme', ))
        abutterance = abutterance.replace((
            'STOP=Bílá Hora',
            'STOP=Železniční stanice',
        ), (
            'STOP=Bílá Hora',
            'železniční stanice',
        ))

        abutterance = abutterance.replace(('TIME=now', 'bych', 'chtěl'),
                                          ('teď', 'bych', 'chtěl'))
        abutterance = abutterance.replace(('STOP=Čím', 'se'), (
            'čím',
            'se',
        ))
        abutterance = abutterance.replace((
            'STOP=Lužin',
            'STOP=Na Chmelnici',
        ), (
            'STOP=Lužin',
            'na',
            'STOP=Chmelnici',
        ))
        abutterance = abutterance.replace(('STOP=Konečná', 'zastávka'), (
            'konečná',
            'zastávka',
        ))
        abutterance = abutterance.replace(('STOP=Konečná', 'STOP=Anděl'), (
            'konečná',
            'STOP=Anděl',
        ))
        abutterance = abutterance.replace(
            ('STOP=Konečná stanice', 'STOP=Ládví'), (
                'konečná',
                'stanice',
                'STOP=Ládví',
            ))
        abutterance = abutterance.replace(('STOP=Výstupní', 'stanice', 'je'),
                                          ('výstupní', 'stanice', 'je'))
        abutterance = abutterance.replace(('STOP=Nová', 'jiné'), (
            'nové',
            'jiné',
        ))
        abutterance = abutterance.replace(('STOP=Nová', 'spojení'), (
            'nové',
            'spojení',
        ))
        abutterance = abutterance.replace(('STOP=Nová', 'zadání'), (
            'nové',
            'zadání',
        ))
        abutterance = abutterance.replace(
            ('STOP=Nová', 'TASK=find_connection'), (
                'nový',
                'TASK=find_connection',
            ))
        abutterance = abutterance.replace((
            'z',
            'CITY=Liberk',
        ), (
            'z',
            'CITY=Liberec',
        ))
        abutterance = abutterance.replace((
            'do',
            'CITY=Liberk',
        ), (
            'do',
            'CITY=Liberec',
        ))
        abutterance = abutterance.replace((
            'pauza',
            'hrozně',
            'STOP=Dlouhá',
        ), (
            'pauza',
            'hrozně',
            'dlouhá',
        ))
        abutterance = abutterance.replace((
            'v',
            'STOP=Praga',
        ), (
            'v',
            'CITY=Praha',
        ))
        abutterance = abutterance.replace((
            'na',
            'STOP=Praga',
        ), (
            'na',
            'CITY=Praha',
        ))
        abutterance = abutterance.replace(('po', 'STOP=Praga', 'ale'), (
            'po',
            'CITY=Praha',
        ))
        abutterance = abutterance.replace((
            'jsem',
            'v',
            'STOP=Metra',
        ), (
            'jsem',
            'v',
            'VEHICLE=metro',
        ))
        category_labels.add('CITY')
        category_labels.add('VEHICLE')

        # print 'After preprocessing: "{utt}".'.format(utt=abutterance)
        # print category_labels

        res_cn = DialogueActConfusionNetwork()

        self.parse_non_speech_events(utterance, res_cn)

        if len(res_cn) == 0:
            # remove non speech events, they are not relevant for SLU
            abutterance = abutterance.replace_all('_noise_', '').replace_all(
                '_laugh_', '').replace_all('_ehm_hmm_',
                                           '').replace_all('_inhale_', '')

            if 'STOP' in category_labels:
                self.parse_stop(abutterance, res_cn)
            if 'CITY' in category_labels:
                self.parse_city(abutterance, res_cn)
            if 'TIME' in category_labels:
                self.parse_time(abutterance, res_cn)
            if 'DATE_REL' in category_labels:
                self.parse_date_rel(abutterance, res_cn)
            if 'AMPM' in category_labels:
                self.parse_ampm(abutterance, res_cn)
            if 'VEHICLE' in category_labels:
                self.parse_vehicle(abutterance, res_cn)
            if 'TASK' in category_labels:
                self.parse_task(abutterance, res_cn)

            self.parse_meta(utterance, res_cn)

        res_cn.merge()

        return res_cn
コード例 #42
0
ファイル: hdc_slu.py プロジェクト: kangliqiang/alex
    def parse_1_best(self, obs, verbose=False, *args, **kwargs):
        """Parse an utterance into a dialogue act.

        :rtype DialogueActConfusionNetwork
        """

        utterance = obs['utt']

        if isinstance(utterance, UtteranceHyp):
            # Parse just the utterance and ignore the confidence score.
            utterance = utterance.utterance

        if verbose:
            print 'Parsing utterance "{utt}".'.format(utt=utterance)

        res_cn = DialogueActConfusionNetwork()

        dict_da = self.utt2da.get(unicode(utterance), None)
        if dict_da:
            for dai in DialogueAct(dict_da):
                res_cn.add(1.0, dai)
            return res_cn

        utterance = self.preprocessing.normalise_utterance(utterance)
        abutterance, category_labels = self.abstract_utterance(utterance)

        if verbose:
            print 'After preprocessing: "{utt}".'.format(utt=abutterance)
            print category_labels

        self.parse_non_speech_events(utterance, res_cn)

        utterance = utterance.replace_all(['_noise_'], '').replace_all(
            ['_laugh_'], '').replace_all(['_ehm_hmm_'],
                                         '').replace_all(['_inhale_'], '')
        abutterance = abutterance.replace_all(['_noise_'], '').replace_all(
            ['_laugh_'], '').replace_all(['_ehm_hmm_'],
                                         '').replace_all(['_inhale_'], '')

        abutterance = self.handle_false_abstractions(abutterance)
        category_labels.add('CITY')
        category_labels.add('VEHICLE')
        category_labels.add('NUMBER')

        if len(res_cn) == 0:
            if 'STOP' in category_labels:
                self.parse_stop(abutterance, res_cn)
            if 'CITY' in category_labels:
                self.parse_city(abutterance, res_cn)
            if 'NUMBER' in category_labels:
                self.parse_number(abutterance)
                if any([word.startswith("TIME") for word in abutterance]):
                    category_labels.add('TIME')
            if 'TIME' in category_labels:
                self.parse_time(abutterance, res_cn)
            if 'DATE_REL' in category_labels:
                self.parse_date_rel(abutterance, res_cn)
            if 'AMPM' in category_labels:
                self.parse_ampm(abutterance, res_cn)
            if 'VEHICLE' in category_labels:
                self.parse_vehicle(abutterance, res_cn)
            if 'TASK' in category_labels:
                self.parse_task(abutterance, res_cn)

            self.parse_meta(utterance, res_cn)

        res_cn.merge()

        return res_cn
コード例 #43
0
ファイル: dm.py プロジェクト: thanhlct/alex
    def process_pending_commands(self):
        """Process all pending commands.

        Available commands:
          stop() - stop processing and exit the process
          flush() - flush input buffers.
            Now it only flushes the input connection.

        Return True if the process should terminate.
        """

        while self.commands.poll():
            command = self.commands.recv()

            if self.cfg['DM']['debug']:
                self.cfg['Logging']['system_logger'].debug(command)

            if isinstance(command, Command):
                #Thanh:
                if command.parsed['__name__'] == 'print_log_dir':
                    print '===***===session-log-dir:', command.source

                if command.parsed['__name__'] == 'stop':
                    return True

                if command.parsed['__name__'] == 'flush':
                    # discard all data in in input buffers
                    while self.slu_hypotheses_in.poll():
                        data_in = self.slu_hypotheses_in.recv()

                    self.dm.end_dialogue()

                    self.commands.send(Command("flushed()", 'DM', 'HUB'))
                    
                    return False

                #if command.parsed['__name__'] == 'prepare_new_dialogue':
                    #self.dm.new_dialogue()

                if command.parsed['__name__'] == 'new_dialogue':
                    self.dm.new_dialogue()#thanh change???

                    self.epilogue_state = None

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    # I should generate the first DM output
                    da = self.dm.da_out()

                    if self.cfg['DM']['debug']:
                        s = []
                        s.append("DM Output")
                        s.append("-"*60)
                        s.append(unicode(da))
                        s.append("")
                        s = '\n'.join(s)
                        self.cfg['Logging']['system_logger'].debug(s)

                    self.cfg['Logging']['session_logger'].dialogue_act("system", da)

                    self.commands.send(DMDA(da, 'DM', 'HUB'))

                    return False

                if command.parsed['__name__'] == 'end_dialogue':
                    self.dm.end_dialogue()
                    return False

                if command.parsed['__name__'] == 'timeout':
                    # check whether there is a looong silence
                    # if yes then inform the DM

                    silence_time = command.parsed['silence_time']

                    cn = DialogueActConfusionNetwork()
                    cn.add(1.0, DialogueActItem('silence','time', silence_time))

                    # process the input DA
                    self.dm.da_in(cn)

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    print '----Time out: ', self.epilogue_state, silence_time
                    '''Thanh
                    if self.epilogue_state == 'give_code':
                        # an cant_apply act have been chosen
                        self.cfg['Logging']['session_logger'].dialogue_act("system", self.epilogue_da)
                        self.commands.send(DMDA(self.epilogue_da, 'DM', 'HUB'))
                        self.commands.send(Command('hangup()', 'DM', 'HUB'))
                        return False
                    #'''
                        
                    if self.epilogue_state and float(silence_time) > 5.0: 
                        if self.epilogue_state == 'final_question': # and self.final_question_repeated<16:
                            da = DialogueAct('say(text="{text}")'.format(text="Sorry, did you get the correct information?"))
                            #self.final_question_repeated += 1
                            self.cfg['Logging']['session_logger'].dialogue_act("system", da)
                            self.commands.send(DMDA(da, 'DM', 'HUB'))
                        else:
                            # a user was silent for too long, therefore hung up
                            self.cfg['Logging']['session_logger'].dialogue_act("system", self.epilogue_da)
                            self.commands.send(DMDA(self.epilogue_da, 'DM', 'HUB'))
                            self.commands.send(Command('hangup()', 'DM', 'HUB'))
                    else:
                        da = self.dm.da_out()

                        if self.cfg['DM']['debug']:
                            s = []
                            s.append("DM Output")
                            s.append("-"*60)
                            s.append(unicode(da))
                            s.append("")
                            s = '\n'.join(s)
                            self.cfg['Logging']['system_logger'].debug(s)

                        self.cfg['Logging']['session_logger'].dialogue_act("system", da)
                        self.commands.send(DMDA(da, 'DM', 'HUB'))

                        if da.has_dat("bye"):
                            self.commands.send(Command('hangup()', 'DM', 'HUB'))

                    return False

        return False
コード例 #44
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
 def test_make_from_da(self):
     da = DialogueAct('inform(food=czech)&inform(area=north)')
     dacn = DialogueActConfusionNetwork.make_from_da(da)
     self.assertEqual(dacn.get_best_da(), da)
コード例 #45
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
    def test_merge(self):
        dacn = DialogueActConfusionNetwork()
        dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
        dacn.add(0.9, DialogueActItem(dai='inform(food=czech)'))
        dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))

        dacn.merge(dacn, combine='max')

        # Russian food should be pruned.
        dacn.sort().prune()
        self.assertTrue(not DialogueActItem(dai='inform(food=russian)') in dacn)
コード例 #46
0
ファイル: dm.py プロジェクト: michlikv/alex
    def process_pending_commands(self):
        """Process all pending commands.

        Available commands:
          stop() - stop processing and exit the process
          flush() - flush input buffers.
            Now it only flushes the input connection.

        Return True if the process should terminate.
        """

        while self.commands.poll():
            command = self.commands.recv()
            if self.cfg['DM']['debug']:
                self.cfg['Logging']['system_logger'].debug(command)

            if isinstance(command, Command):
                if command.parsed['__name__'] == 'stop':
                    return True

                if command.parsed['__name__'] == 'flush':
                    # discard all data in in input buffers
                    while self.slu_hypotheses_in.poll():
                        data_in = self.slu_hypotheses_in.recv()

                    self.dm.end_dialogue()

                    self.commands.send(Command("flushed()", 'DM', 'HUB'))
                    
                    return False

                if command.parsed['__name__'] == 'new_dialogue':
                    self.epilogue_state = None
                    self.dm.new_dialogue()

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    # I should generate the first DM output
                    da = self.dm.da_out()

                    if self.cfg['DM']['debug']:
                        s = []
                        s.append("DM Output")
                        s.append("-"*60)
                        s.append(unicode(da))
                        s.append("")
                        s = '\n'.join(s)
                        self.cfg['Logging']['system_logger'].debug(s)

                    self.cfg['Logging']['session_logger'].dialogue_act("system", da)

                    self.commands.send(DMDA(da, 'DM', 'HUB'))

                    return False

                if command.parsed['__name__'] == 'end_dialogue':
                    self.dm.end_dialogue()
                    return False

                if command.parsed['__name__'] == 'timeout':
                    # check whether there is a looong silence
                    # if yes then inform the DM

                    silence_time = command.parsed['silence_time']

                    cn = DialogueActConfusionNetwork()
                    cn.add(1.0, DialogueActItem('silence','time', silence_time))

                    # process the input DA
                    self.dm.da_in(cn)

                    self.cfg['Logging']['session_logger'].turn("system")
                    self.dm.log_state()

                    if self.epilogue_state and float(silence_time) > 5.0:
                        # a user was silent for too long, therefore hung up
                        self.cfg['Logging']['session_logger'].dialogue_act("system", self.epilogue_da)
                        self.commands.send(DMDA(self.epilogue_da, 'DM', 'HUB'))
                        self.commands.send(Command('hangup()', 'DM', 'HUB'))
                    else:
                        da = self.dm.da_out()

                        if self.cfg['DM']['debug']:
                            s = []
                            s.append("DM Output")
                            s.append("-"*60)
                            s.append(unicode(da))
                            s.append("")
                            s = '\n'.join(s)
                            self.cfg['Logging']['system_logger'].debug(s)

                        self.cfg['Logging']['session_logger'].dialogue_act("system", da)
                        self.commands.send(DMDA(da, 'DM', 'HUB'))

                        if da.has_dat("bye"):
                            self.commands.send(Command('hangup()', 'DM', 'HUB'))

                    return False

        return False
コード例 #47
0
ファイル: test_da.py プロジェクト: henrypig/alex-1
 def test_make_from_da(self):
     da = DialogueAct('inform(food=czech)&inform(area=north)')
     dacn = DialogueActConfusionNetwork.make_from_da(da)
     self.assertEqual(dacn.get_best_da(), da)
コード例 #48
0
ファイル: dailrclassifier.py プロジェクト: UFAL-DSG/alex
    def parse_X(self, utterance, verbose=False):
        if verbose:
            print '='*120
            print 'Parsing X'
            print '-'*120
            print unicode(utterance)

        if self.preprocessing:
            utterance = self.preprocessing.normalise(utterance)
            utterance_fvcs = self.get_fvc(utterance)

        if verbose:
            print unicode(utterance)
            print unicode(utterance_fvcs)


        da_confnet = DialogueActConfusionNetwork()
        for clser in self.trained_classifiers:
            if verbose:
                print "Using classifier: ", unicode(clser)

            if self.parsed_classifiers[clser].value and self.parsed_classifiers[clser].value.startswith('CL_'):
                # process abstracted classifiers

                for f, v, c in utterance_fvcs:
                    cc = "CL_" + c.upper()

                    if self.parsed_classifiers[clser].value == cc:
                        #print clser, f, v, c

                        classifiers_features = self.get_features(utterance, (f, v, cc), utterance_fvcs)
                        classifiers_inputs = np.zeros((1, len(self.classifiers_features_mapping[clser])))
                        classifiers_inputs[0] = classifiers_features.get_feature_vector(self.classifiers_features_mapping[clser])

                        #if verbose:
                        #    print classifiers_features
                        #    print self.classifiers_features_mapping[clser]

                        p = self.trained_classifiers[clser].predict_proba(classifiers_inputs)

                        if verbose:
                            print '  Probability:', p

                        dai = DialogueActItem(self.parsed_classifiers[clser].dat, self.parsed_classifiers[clser].name, v)
                        da_confnet.add_merge(p[0][1], dai, combine='max')
            else:
                # process concrete classifiers
                classifiers_features = self.get_features(utterance, (None, None, None), utterance_fvcs)
                classifiers_inputs = np.zeros((1, len(self.classifiers_features_mapping[clser])))
                classifiers_inputs[0] = classifiers_features.get_feature_vector(self.classifiers_features_mapping[clser])

                #if verbose:
                #    print classifiers_features
                #    print self.classifiers_features_mapping[clser]

                p = self.trained_classifiers[clser].predict_proba(classifiers_inputs)

                if verbose:
                    print '  Probability:', p

                dai = self.parsed_classifiers[clser]
                da_confnet.add_merge(p[0][1], dai, combine='max')

        da_confnet.sort().prune()

        return da_confnet
コード例 #49
0
ファイル: test_da.py プロジェクト: UFAL-DSG/alex
 def test_normalise(self):
     dacn = DialogueActConfusionNetwork()
     dacn.add(0.05, DialogueActItem(dai='inform(food=chinese)'))
     dacn.add(1.9, DialogueActItem(dai='inform(food=czech)'))
     dacn.add(0.00005, DialogueActItem(dai='inform(food=russian)'))
     self.assertRaises(ConfusionNetworkException, dacn.normalise)