def _prepare_reanalyze_data(self, replay_buffer: ReplayBuffer, env_ids, positions, n1, n2): """ Get the n1 + n2 steps of experience indicated by ``positions`` and return as the first n1 as ``exp1`` and the next n2 steps as ``exp2``. """ batch_size = env_ids.shape[0] n = n1 + n2 flat_env_ids = env_ids.expand_as(positions).reshape(-1) flat_positions = positions.reshape(-1) exp = replay_buffer.get_field(None, flat_env_ids, flat_positions) if self._data_transformer_ctor is not None: if self._data_transformer is None: observation_spec = dist_utils.extract_spec(exp.observation) self._data_transformer = create_data_transformer( self._data_transformer_ctor, observation_spec) # DataTransformer assumes the shape of exp is [B, T, ...] # It also needs exp.batch_info and exp.replay_buffer. exp = alf.nest.map_structure(lambda x: x.unsqueeze(1), exp) exp = exp._replace(batch_info=BatchInfo(flat_env_ids, flat_positions), replay_buffer=replay_buffer) exp = self._data_transformer.transform_experience(exp) exp = exp._replace(batch_info=(), replay_buffer=()) exp = alf.nest.map_structure(lambda x: x.squeeze(1), exp) def _split1(x): shape = x.shape[1:] x = x.reshape(batch_size, n, *shape) return x[:, :n1, ...].reshape(batch_size * n1, *shape) def _split2(x): shape = x.shape[1:] x = x.reshape(batch_size, n, *shape) return x[:, n1:, ...].reshape(batch_size * n2, *shape) with alf.device(self._device): exp = convert_device(exp) exp1 = alf.nest.map_structure(_split1, exp) exp2 = alf.nest.map_structure(_split2, exp) return exp1, exp2
def test_frame_stacker(self, stack_axis=0): data_spec = DataItem(step_type=alf.TensorSpec((), dtype=torch.int32), observation=dict(scalar=alf.TensorSpec(()), vector=alf.TensorSpec((7, )), matrix=alf.TensorSpec((5, 6)), tensor=alf.TensorSpec( (2, 3, 4)))) replay_buffer = ReplayBuffer(data_spec=data_spec, num_environments=2, max_length=1024, num_earliest_frames_ignored=2) frame_stacker = FrameStacker( data_spec.observation, stack_size=3, stack_axis=stack_axis, fields=['scalar', 'vector', 'matrix', 'tensor']) new_spec = frame_stacker.transformed_observation_spec self.assertEqual(new_spec['scalar'].shape, (3, )) self.assertEqual(new_spec['vector'].shape, (21, )) if stack_axis == -1: self.assertEqual(new_spec['matrix'].shape, (5, 18)) self.assertEqual(new_spec['tensor'].shape, (2, 3, 12)) elif stack_axis == 0: self.assertEqual(new_spec['matrix'].shape, (15, 6)) self.assertEqual(new_spec['tensor'].shape, (6, 3, 4)) def _step_type(t, period): if t % period == 0: return StepType.FIRST if t % period == period - 1: return StepType.LAST return StepType.MID observation = alf.nest.map_structure( lambda spec: spec.randn((1000, 2)), data_spec.observation) state = common.zero_tensor_from_nested_spec(frame_stacker.state_spec, 2) def _get_stacked_data(t, b): if stack_axis == -1: return dict(scalar=observation['scalar'][t, b], vector=observation['vector'][t, b].reshape(-1), matrix=observation['matrix'][t, b].transpose( 0, 1).reshape(5, 18), tensor=observation['tensor'][t, b].permute( 1, 2, 0, 3).reshape(2, 3, 12)) elif stack_axis == 0: return dict(scalar=observation['scalar'][t, b], vector=observation['vector'][t, b].reshape(-1), matrix=observation['matrix'][t, b].reshape(15, 6), tensor=observation['tensor'][t, b].reshape(6, 3, 4)) def _check_equal(stacked, expected, b): self.assertEqual(stacked['scalar'][b], expected['scalar']) self.assertEqual(stacked['vector'][b], expected['vector']) self.assertEqual(stacked['matrix'][b], expected['matrix']) self.assertEqual(stacked['tensor'][b], expected['tensor']) for t in range(1000): batch = DataItem( step_type=torch.tensor([_step_type(t, 17), _step_type(t, 22)]), observation=alf.nest.map_structure(lambda x: x[t], observation)) replay_buffer.add_batch(batch) timestep, state = frame_stacker.transform_timestep(batch, state) if t == 0: for b in (0, 1): expected = _get_stacked_data([0, 0, 0], b) _check_equal(timestep.observation, expected, b) if t == 1: for b in (0, 1): expected = _get_stacked_data([0, 0, 1], b) _check_equal(timestep.observation, expected, b) if t == 2: for b in (0, 1): expected = _get_stacked_data([0, 1, 2], b) _check_equal(timestep.observation, expected, b) if t == 16: for b in (0, 1): expected = _get_stacked_data([14, 15, 16], b) _check_equal(timestep.observation, expected, b) if t == 17: for b, t in ((0, [17, 17, 17]), (1, [15, 16, 17])): expected = _get_stacked_data(t, b) _check_equal(timestep.observation, expected, b) if t == 18: for b, t in ((0, [17, 17, 18]), (1, [16, 17, 18])): expected = _get_stacked_data(t, b) _check_equal(timestep.observation, expected, b) if t == 22: for b, t in ((0, [20, 21, 22]), (1, [22, 22, 22])): expected = _get_stacked_data(t, b) _check_equal(timestep.observation, expected, b) batch_info = BatchInfo(env_ids=torch.tensor([0, 1, 0, 1], dtype=torch.int64), positions=torch.tensor([0, 1, 18, 22], dtype=torch.int64)) # [4, 2, ...] experience = replay_buffer.get_field( '', batch_info.env_ids.unsqueeze(-1), batch_info.positions.unsqueeze(-1) + torch.arange(2)) experience = experience._replace(batch_info=batch_info, replay_buffer=replay_buffer) experience = frame_stacker.transform_experience(experience) expected = _get_stacked_data([0, 0, 0], 0) _check_equal(experience.observation, expected, (0, 0)) expected = _get_stacked_data([0, 0, 1], 0) _check_equal(experience.observation, expected, (0, 1)) expected = _get_stacked_data([0, 0, 1], 1) _check_equal(experience.observation, expected, (1, 0)) expected = _get_stacked_data([0, 1, 2], 1) _check_equal(experience.observation, expected, (1, 1)) expected = _get_stacked_data([17, 17, 18], 0) _check_equal(experience.observation, expected, (2, 0)) expected = _get_stacked_data([17, 18, 19], 0) _check_equal(experience.observation, expected, (2, 1)) expected = _get_stacked_data([22, 22, 22], 1) _check_equal(experience.observation, expected, (3, 0)) expected = _get_stacked_data([22, 22, 23], 1) _check_equal(experience.observation, expected, (3, 1))
def _test_preprocess_experience(self, train_reward_function, td_steps, reanalyze_ratio, expected): """ The following summarizes how the data is generated: .. code-block:: python # position: 01234567890123 step_type0 = 'FMMMLFMMLFMMMM' step_type1 = 'FMMMMMLFMMMMLF' scale = 1. for current model 2. for target model observation = [position] * 3 reward = position if train_reward_function and td_steps!=-1 else position * (step_type == LAST) value = 0.5 * position * scale action_probs = scale * [position, position+1, position] for env 0 scale * [position+1, position, position] for env 1 action = 1 for env 0 0 for env 1 """ reanalyze_td_steps = 2 num_unroll_steps = 4 batch_size = 2 obs_dim = 3 observation_spec = alf.TensorSpec([obs_dim]) action_spec = alf.BoundedTensorSpec((), minimum=0, maximum=1, dtype=torch.int32) reward_spec = alf.TensorSpec(()) time_step_spec = ds.time_step_spec(observation_spec, action_spec, reward_spec) global _mcts_model_id _mcts_model_id = 0 muzero = MuzeroAlgorithm(observation_spec, action_spec, model_ctor=_create_mcts_model, mcts_algorithm_ctor=MockMCTSAlgorithm, num_unroll_steps=num_unroll_steps, td_steps=td_steps, train_game_over_function=True, train_reward_function=train_reward_function, reanalyze_ratio=reanalyze_ratio, reanalyze_td_steps=reanalyze_td_steps, data_transformer_ctor=partial(FrameStacker, stack_size=2)) data_transformer = FrameStacker(observation_spec, stack_size=2) time_step = common.zero_tensor_from_nested_spec( time_step_spec, batch_size) dt_state = common.zero_tensor_from_nested_spec( data_transformer.state_spec, batch_size) state = muzero.get_initial_predict_state(batch_size) transformed_time_step, dt_state = data_transformer.transform_timestep( time_step, dt_state) alg_step = muzero.rollout_step(transformed_time_step, state) alg_step_spec = dist_utils.extract_spec(alg_step) experience = ds.make_experience(time_step, alg_step, state) experience_spec = ds.make_experience(time_step_spec, alg_step_spec, muzero.train_state_spec) replay_buffer = ReplayBuffer(data_spec=experience_spec, num_environments=batch_size, max_length=16, keep_episodic_info=True) # 01234567890123 step_type0 = 'FMMMLFMMLFMMMM' step_type1 = 'FMMMMMLFMMMMLF' dt_state = common.zero_tensor_from_nested_spec( data_transformer.state_spec, batch_size) for i in range(len(step_type0)): step_type = [step_type0[i], step_type1[i]] step_type = [ ds.StepType.MID if c == 'M' else (ds.StepType.FIRST if c == 'F' else ds.StepType.LAST) for c in step_type ] step_type = torch.tensor(step_type, dtype=torch.int32) reward = reward = torch.full([batch_size], float(i)) if not train_reward_function or td_steps == -1: reward = reward * (step_type == ds.StepType.LAST).to( torch.float32) time_step = time_step._replace( discount=(step_type != ds.StepType.LAST).to(torch.float32), step_type=step_type, observation=torch.tensor([[i, i + 1, i], [i + 1, i, i]], dtype=torch.float32), reward=reward, env_id=torch.arange(batch_size, dtype=torch.int32)) transformed_time_step, dt_state = data_transformer.transform_timestep( time_step, dt_state) alg_step = muzero.rollout_step(transformed_time_step, state) experience = ds.make_experience(time_step, alg_step, state) replay_buffer.add_batch(experience) state = alg_step.state env_ids = torch.tensor([0] * 14 + [1] * 14, dtype=torch.int64) positions = torch.tensor(list(range(14)) + list(range(14)), dtype=torch.int64) experience = replay_buffer.get_field(None, env_ids.unsqueeze(-1).cpu(), positions.unsqueeze(-1).cpu()) experience = experience._replace(replay_buffer=replay_buffer, batch_info=BatchInfo( env_ids=env_ids, positions=positions), rollout_info_field='rollout_info') processed_experience = muzero.preprocess_experience(experience) import pprint pprint.pprint(processed_experience.rollout_info) alf.nest.map_structure(lambda x, y: self.assertEqual(x, y), processed_experience.rollout_info, expected)
def test_preprocess_experience(self): """ The following summarizes how the data is generated: .. code-block:: python # position: 01234567890123 step_type0 = 'FMMMLFMMLFMMMM' step_type1 = 'FMMMMMLFMMMMLF' reward = position if train_reward_function and td_steps!=-1 else position * (step_type == LAST) action = t + 1 for env 0 t for env 1 """ num_unroll_steps = 4 batch_size = 2 obs_dim = 3 observation_spec = alf.TensorSpec([obs_dim]) action_spec = alf.BoundedTensorSpec((1, ), minimum=0, maximum=1, dtype=torch.float32) reward_spec = alf.TensorSpec(()) time_step_spec = ds.time_step_spec(observation_spec, action_spec, reward_spec) repr_learner = PredictiveRepresentationLearner( observation_spec, action_spec, num_unroll_steps=num_unroll_steps, decoder_ctor=partial(SimpleDecoder, target_field='reward', decoder_net_ctor=partial( EncodingNetwork, fc_layer_params=(4, ))), encoding_net_ctor=LSTMEncodingNetwork, dynamics_net_ctor=LSTMEncodingNetwork) time_step = common.zero_tensor_from_nested_spec( time_step_spec, batch_size) state = repr_learner.get_initial_predict_state(batch_size) alg_step = repr_learner.rollout_step(time_step, state) alg_step = alg_step._replace(output=torch.tensor([[1.], [0.]])) alg_step_spec = dist_utils.extract_spec(alg_step) experience = ds.make_experience(time_step, alg_step, state) experience_spec = ds.make_experience(time_step_spec, alg_step_spec, repr_learner.train_state_spec) replay_buffer = ReplayBuffer(data_spec=experience_spec, num_environments=batch_size, max_length=16, keep_episodic_info=True) # 01234567890123 step_type0 = 'FMMMLFMMLFMMMM' step_type1 = 'FMMMMMLFMMMMLF' for i in range(len(step_type0)): step_type = [step_type0[i], step_type1[i]] step_type = [ ds.StepType.MID if c == 'M' else (ds.StepType.FIRST if c == 'F' else ds.StepType.LAST) for c in step_type ] step_type = torch.tensor(step_type, dtype=torch.int32) reward = reward = torch.full([batch_size], float(i)) time_step = time_step._replace( discount=(step_type != ds.StepType.LAST).to(torch.float32), step_type=step_type, observation=torch.tensor([[i, i + 1, i], [i + 1, i, i]], dtype=torch.float32), reward=reward, env_id=torch.arange(batch_size, dtype=torch.int32)) alg_step = repr_learner.rollout_step(time_step, state) alg_step = alg_step._replace(output=i + torch.tensor([[1.], [0.]])) experience = ds.make_experience(time_step, alg_step, state) replay_buffer.add_batch(experience) state = alg_step.state env_ids = torch.tensor([0] * 14 + [1] * 14, dtype=torch.int64) positions = torch.tensor(list(range(14)) + list(range(14)), dtype=torch.int64) experience = replay_buffer.get_field(None, env_ids.unsqueeze(-1).cpu(), positions.unsqueeze(-1).cpu()) experience = experience._replace(replay_buffer=replay_buffer, batch_info=BatchInfo( env_ids=env_ids, positions=positions), rollout_info_field='rollout_info') processed_experience = repr_learner.preprocess_experience(experience) pprint.pprint(processed_experience.rollout_info) # yapf: disable expected = PredictiveRepresentationLearnerInfo( action=torch.tensor( [[[ 1., 2., 3., 4., 5.]], [[ 2., 3., 4., 5., 5.]], [[ 3., 4., 5., 5., 5.]], [[ 4., 5., 5., 5., 5.]], [[ 5., 5., 5., 5., 5.]], [[ 6., 7., 8., 9., 9.]], [[ 7., 8., 9., 9., 9.]], [[ 8., 9., 9., 9., 9.]], [[ 9., 9., 9., 9., 9.]], [[10., 11., 12., 13., 14.]], [[11., 12., 13., 14., 14.]], [[12., 13., 14., 14., 14.]], [[13., 14., 14., 14., 14.]], [[14., 14., 14., 14., 14.]], [[ 0., 1., 2., 3., 4.]], [[ 1., 2., 3., 4., 5.]], [[ 2., 3., 4., 5., 6.]], [[ 3., 4., 5., 6., 6.]], [[ 4., 5., 6., 6., 6.]], [[ 5., 6., 6., 6., 6.]], [[ 6., 6., 6., 6., 6.]], [[ 7., 8., 9., 10., 11.]], [[ 8., 9., 10., 11., 12.]], [[ 9., 10., 11., 12., 12.]], [[10., 11., 12., 12., 12.]], [[11., 12., 12., 12., 12.]], [[12., 12., 12., 12., 12.]], [[13., 13., 13., 13., 13.]]]).unsqueeze(-1), mask=torch.tensor( [[[ True, True, True, True, True]], [[ True, True, True, True, False]], [[ True, True, True, False, False]], [[ True, True, False, False, False]], [[ True, False, False, False, False]], [[ True, True, True, True, False]], [[ True, True, True, False, False]], [[ True, True, False, False, False]], [[ True, False, False, False, False]], [[ True, True, True, True, True]], [[ True, True, True, True, False]], [[ True, True, True, False, False]], [[ True, True, False, False, False]], [[ True, False, False, False, False]], [[ True, True, True, True, True]], [[ True, True, True, True, True]], [[ True, True, True, True, True]], [[ True, True, True, True, False]], [[ True, True, True, False, False]], [[ True, True, False, False, False]], [[ True, False, False, False, False]], [[ True, True, True, True, True]], [[ True, True, True, True, True]], [[ True, True, True, True, False]], [[ True, True, True, False, False]], [[ True, True, False, False, False]], [[ True, False, False, False, False]], [[ True, False, False, False, False]]]), target=torch.tensor( [[[ 0., 1., 2., 3., 4.]], [[ 1., 2., 3., 4., 4.]], [[ 2., 3., 4., 4., 4.]], [[ 3., 4., 4., 4., 4.]], [[ 4., 4., 4., 4., 4.]], [[ 5., 6., 7., 8., 8.]], [[ 6., 7., 8., 8., 8.]], [[ 7., 8., 8., 8., 8.]], [[ 8., 8., 8., 8., 8.]], [[ 9., 10., 11., 12., 13.]], [[10., 11., 12., 13., 13.]], [[11., 12., 13., 13., 13.]], [[12., 13., 13., 13., 13.]], [[13., 13., 13., 13., 13.]], [[ 0., 1., 2., 3., 4.]], [[ 1., 2., 3., 4., 5.]], [[ 2., 3., 4., 5., 6.]], [[ 3., 4., 5., 6., 6.]], [[ 4., 5., 6., 6., 6.]], [[ 5., 6., 6., 6., 6.]], [[ 6., 6., 6., 6., 6.]], [[ 7., 8., 9., 10., 11.]], [[ 8., 9., 10., 11., 12.]], [[ 9., 10., 11., 12., 12.]], [[10., 11., 12., 12., 12.]], [[11., 12., 12., 12., 12.]], [[12., 12., 12., 12., 12.]], [[13., 13., 13., 13., 13.]]])) # yapf: enable alf.nest.map_structure(lambda x, y: self.assertEqual(x, y), processed_experience.rollout_info, expected)
def _reanalyze1(self, replay_buffer: ReplayBuffer, env_ids, positions, mcts_state_field): """Reanalyze one batch. This means: 1. Re-plan the policy using MCTS for n1 = 1 + num_unroll_steps to get fresh policy and value target. 2. Caluclate the value for following n2 = reanalyze_td_steps so that we have value for a total of 1 + num_unroll_steps + reanalyze_td_steps. 3. Use these values and rewards from replay buffer to caculate n2-step bootstraped value target for the first n1 steps. In order to do 1 and 2, we need to get the observations for n1 + n2 steps and processs them using data_transformer. """ batch_size = env_ids.shape[0] n1 = self._num_unroll_steps + 1 n2 = self._reanalyze_td_steps env_ids, positions = self._next_n_positions( replay_buffer, env_ids, positions, self._num_unroll_steps + n2) # [B, n1] positions1 = positions[:, :n1] game_overs = replay_buffer.get_field('discount', env_ids, positions1) == 0. steps_to_episode_end = replay_buffer.steps_to_episode_end( positions1, env_ids) bootstrap_n = steps_to_episode_end.clamp(max=n2) exp1, exp2 = self._prepare_reanalyze_data(replay_buffer, env_ids, positions, n1, n2) bootstrap_position = positions1 + bootstrap_n discount = replay_buffer.get_field('discount', env_ids, bootstrap_position) sum_reward = self._sum_discounted_reward(replay_buffer, env_ids, positions1, bootstrap_position, n2) if not self._train_reward_function: rewards = self._get_reward(replay_buffer, env_ids, bootstrap_position) with alf.device(self._device): bootstrap_n = convert_device(bootstrap_n) discount = convert_device(discount) sum_reward = convert_device(sum_reward) game_overs = convert_device(game_overs) # 1. Reanalyze the first n1 steps to get both the updated value and policy self._mcts.set_model(self._target_model) mcts_step = self._mcts.predict_step( exp1, alf.nest.get_field(exp1, mcts_state_field)) self._mcts.set_model(self._model) candidate_actions = () if not _is_empty(mcts_step.info.candidate_actions): candidate_actions = mcts_step.info.candidate_actions candidate_actions = candidate_actions.reshape( batch_size, n1, *candidate_actions.shape[1:]) candidate_action_policy = mcts_step.info.candidate_action_policy candidate_action_policy = candidate_action_policy.reshape( batch_size, n1, *candidate_action_policy.shape[1:]) values1 = mcts_step.info.value.reshape(batch_size, n1) # 2. Calulate the value of the next n2 steps so that n2-step return # can be computed. model_output = self._target_model.initial_inference( exp2.observation) values2 = model_output.value.reshape(batch_size, n2) # 3. Calculate n2-step return values = torch.cat([values1, values2], dim=1) # [B, n1] bootstrap_pos = torch.arange(n1).unsqueeze(0) + bootstrap_n values = values[torch.arange(batch_size).unsqueeze(-1), bootstrap_pos] values = values * discount * (self._discount**bootstrap_n.to( torch.float32)) values = values + sum_reward if not self._train_reward_function: # For this condition, we need to set the value at and after the # last step to be the last reward. values = torch.where(game_overs, convert_device(rewards), values) return candidate_actions, candidate_action_policy, values