train = fit(train, 'labels') test = fit(test, 'labels') # print(train) if transformer_config["evaluate_during_training"]: if transformer_config["n_fold"] > 1: test_preds = np.zeros((len(test), transformer_config["n_fold"])) for i in range(transformer_config["n_fold"]): if os.path.exists( transformer_config['output_dir']) and os.path.isdir( transformer_config['output_dir']): shutil.rmtree(transformer_config['output_dir']) model = QuestModel(MODEL_TYPE, MODEL_NAME, num_labels=NUM_LABELS, use_cuda=torch.cuda.is_available(), args=transformer_config) train, eval_df = train_test_split(train, test_size=0.11, random_state=SEED * i) # model.train_model(train, eval_df=eval_df) if NUM_LABELS == 1: model.train_model(train, eval_df=eval_df, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error) else: model.train_model(train, eval_df=eval_df,
train = fit(train, 'labels') test = fit(test, 'labels') if transformer_config["evaluate_during_training"]: if transformer_config["n_fold"] > 1: test_preds = np.zeros((len(test), transformer_config["n_fold"])) for i in range(transformer_config["n_fold"]): if os.path.exists( transformer_config['output_dir']) and os.path.isdir( transformer_config['output_dir']): shutil.rmtree(transformer_config['output_dir']) model = QuestModel(MODEL_TYPE, MODEL_NAME, num_labels=1, use_cuda=torch.cuda.is_available(), args=transformer_config) train, eval_df = train_test_split(train, test_size=0.1, random_state=SEED * i) model.train_model(train, eval_df=eval_df, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error) model = QuestModel(MODEL_TYPE, transformer_config["best_model_dir"], num_labels=1, use_cuda=torch.cuda.is_available(), args=transformer_config)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--results_fname') parser.add_argument('--train_path') parser.add_argument('--test_path') parser.add_argument('--inject_features') parser.add_argument('--output_dir') args = parser.parse_args() train_config.update({ 'output_dir': os.path.join(args.output_dir, 'outputs'), 'best_model_dir': os.path.join(args.output_dir, 'best_model'), 'cache_dir': os.path.join(args.output_dir, 'cache_dir') }) train, test = read_data_files(args.train_path, args.test_path, inject_features=args.inject_features) if train_config['evaluate_during_training']: if train_config['n_fold'] > 1: test_preds = np.zeros((len(test), train_config['n_fold'])) for i in range(train_config['n_fold']): if os.path.exists( train_config['output_dir']) and os.path.isdir( train_config['output_dir']): shutil.rmtree(train_config['output_dir']) model = QuestModel(MODEL_TYPE, MODEL_NAME, num_labels=1, use_cuda=torch.cuda.is_available(), args=train_config) train, eval_df = train_test_split(train, test_size=0.1, random_state=SEED * i) model.train_model(train, eval_df=eval_df, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error) model = QuestModel(MODEL_TYPE, train_config['best_model_dir'], num_labels=1, use_cuda=torch.cuda.is_available(), args=train_config) result, model_outputs, wrong_predictions = model.eval_model( test, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error) test_preds[:, i] = model_outputs test['predictions'] = test_preds.mean(axis=1) else: model = QuestModel(MODEL_TYPE, MODEL_NAME, num_labels=1, use_cuda=torch.cuda.is_available(), args=train_config) train, eval_df = train_test_split(train, test_size=0.1, random_state=SEED) model.train_model(train, eval_df=eval_df, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error) model = QuestModel(MODEL_TYPE, train_config['best_model_dir'], num_labels=1, use_cuda=torch.cuda.is_available(), args=train_config) result, model_outputs, wrong_predictions = model.eval_model( test, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error) test['predictions'] = model_outputs else: model = QuestModel(MODEL_TYPE, MODEL_NAME, num_labels=1, use_cuda=torch.cuda.is_available(), args=train_config) model.train_model(train, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error, inject_features=args.inject_features) result, model_outputs, wrong_predictions = model.eval_model( test, pearson_corr=pearson_corr, spearman_corr=spearman_corr, mae=mean_absolute_error) test['predictions'] = model_outputs test = un_fit(test, 'labels') test = un_fit(test, 'predictions') test.to_csv(os.path.join(args.output_dir, '{}.tsv'.format(args.results_fname)), header=True, sep='\t', index=False, encoding='utf-8') draw_scatterplot( test, 'labels', 'predictions', os.path.join(args.output_dir, '{}.png'.format(args.results_fname)), MODEL_TYPE + ' ' + MODEL_NAME)