def test_forest_age(forest_age_range=(3, 10, 50, 100), num_sim=50): dfs = [] for age in forest_age_range: series = [] for n in range(1, num_sim + 1): P, R = forest(S=age) vi = solve_mdp.solve_mdp_by_iteration(ValueIteration, P, R, max_iter=n) series.append(vi) df = pd.concat(series, axis=1).T dfs.append(df) return pd.concat(dfs)
def test_discount_factor(discount_factor_range=(0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 0.99), num_sim=50): dfs = [] for factor in discount_factor_range: series = [] for n in range(1, num_sim + 1): P, R = forest(S=50) vi = solve_mdp.solve_mdp_by_iteration(ValueIteration, P, R, discount=factor, max_iter=n) series.append(vi) df = pd.concat(series, axis=1).T dfs.append(df) return pd.concat(dfs)
def test_discount_factor(transitions, rewards, discount_factor_range=(0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 0.99), num_sim=50): dfs = [] P, R = transitions, rewards for factor in discount_factor_range: series = [] for n in range(1, num_sim): vi = solve_mdp.solve_mdp_by_iteration(ValueIteration, P, R, discount=factor, max_iter=n) series.append(vi) df = pd.concat(series, axis=1).T dfs.append(df) return pd.concat(dfs)
def test_fire_probability(fireprob_range=(0.01, 0.1, 0.2, 0.5, 0.8, 0.9, 0.99), num_sim=50): dfs = [] for factor in fireprob_range: series = [] for n in range(1, num_sim + 1): P, R = forest(S=50, p=factor) vi = solve_mdp.solve_mdp_by_iteration(ValueIteration, P, R, max_iter=n) vi = vi.append(pd.Series(factor, index=["fire_probability"])) series.append(vi) df = pd.concat(series, axis=1).T dfs.append(df) return pd.concat(dfs)