import algorithm.extra_feature_lbp as extra_feature_lbp import algorithm.classify_random as classify_random import algorithm.lower_dimen_pca as lower_dimen_pca import time startTime = time.time() # 用LBP方法进行特征预处理 extra_feature_lbp.run(method_generateFaceRS='lbp') # 读取LBP特征处理的结果,并用PCA方法进行特征降维 lower_dimen_pca.run(method_readFaceRS='lbp', method_generateUpdateFaceRS='lbp_pca', n_components=99) # 用RandomForest进行分类 classify_random.run(method_readFaceRS='lbp_pca') endTime = time.time() print('\nLBP_PCA_Random costs %.2f seconds.' % (endTime - startTime))
import algorithm.extra_feature_hog as extra_feature_hog import algorithm.lower_dimen_pca as lower_dimen_pca import algorithm.classify_svm as classify_svm import time startTime = time.time() # 用HOG方法进行特征预处理 extra_feature_hog.run(method_generateFaceRS='hog') # 读取HOG特征处理的结果,并用PCA方法进行特征降维 lower_dimen_pca.run(method_readFaceRS='hog', method_generateUpdateFaceRS='hog_pca') # 采用SVM进行分类,输出HOG_PCA_SVM犯错矩阵 classify_svm.run(method_readFaceRS='hog_pca') endTime = time.time() print('\nHOG_PCA_SVM costs %.2f seconds.' % (endTime - startTime))