コード例 #1
0
    ]

    q = 0.00001
    # q = 1
    var_init = [q, q]

    v = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr, var_init)
    meas = me.Measurement(n_v, n_f, t_s, True)

    data = DataCollect.DataCollect(n_v, n_f)
    data.init(n_v, n_f, init_veh_distr, init_feat_distr[:n_f])
    v = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr[:n_f],
                           var_init)
    # meas.meas_fea[0][1][:, 10:25] = None

    algorithm.main_loop(v, meas, 1, t_s, data)

    fontprop = FontProperties()
    fontprop.set_size('small')
    #
    # plt.figure(1, figsize=(9, 5))
    # err1 = plt.subplot(211)
    # plt.plot(error[0][0, :], label='Square error in x')
    # plt.plot(error[0][1, :], label='Square error in y')
    # plt.plot(error_mean_distance[0], label='Mean distance error')
    # plt.title('The RMSE for vehicle 1')
    # plt.xlabel('Time')
    # plt.ylabel('RMSE [m]')
    # plt.subplots_adjust(hspace=0.36)
    # err1.legend(ncol=3, prop=fontprop)
    # err1.set_ylim([err1.get_ylim()[0], err1.get_ylim()[0] + (err1.get_ylim()[1] - err1.get_ylim()[0])*1.15])
コード例 #2
0
    for n_mp in range(1, rangeNmp):
        data = [None for i in range(runs)]
        meas = [None for i in range(runs)]
        error_square = [[None for i in range(runs)] for j in range(n_v)]
        error_distance = [[None for i in range(runs)] for j in range(n_v)]
        error = [None for i in range(n_v)]
        error_mean_distance = [None for i in range(n_v)]

        for run in range(runs):
            meas[run] = me.Measurement(n_v, n_f, 1)
            data[run] = DataCollect.DataCollect(n_v, n_f)
            data[run].init(n_v, n_f, init_veh_distr, init_feat_distr[:n_f])
            v = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr[:n_f], var_init)
            print('Nmp = '+str(n_mp))
            algorithm.main_loop(v, meas[run], n_mp, 1, data[run])
            for k in range(n_v):
                error_square[k][run] = np.power(data[run].get_veh_belief(k)[:2, :] - meas[run].mean_veh[k], 2)
                error_distance[k][run] = np.sum(error_square[k][run], axis = 0)
        for l in range(n_v):
            error[l] = np.mean(error_square[l], axis = 0)
            error_mean_distance[l] = np.mean(error_distance[l], axis = 0)
            collectMSE[l][n_mp-1] = np.mean(error_mean_distance[l][7:], axis=0)

    print collectMSE


    fontprop = FontProperties()
    fontprop.set_size('small')

    plt.figure(1, figsize=(9, 5))
コード例 #3
0
init_feat_distr = [
    Distribution.Distribution(p3, cov3),
    Distribution.Distribution(p4, cov4),
    Distribution.Distribution(p5, cov5),
    Distribution.Distribution(p6, cov6),
    Distribution.Distribution(p7, cov7)
]

q = 1
var_init = [q, q]

data = DataCollect.DataCollect(n_v, n_f)
data.init(n_v, n_f, init_veh_distr, init_feat_distr[:n_f])
v = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr[:n_f],
                       var_init)
algorithm.main_loop(v, meas, N_mp, 1, data)

data.save_data('ICP' + str(n_v) + '_' + str(n_f) + name + '_' + str(N_mp) +
               '.pickle')
fontprop = FontProperties()
fontprop.set_size('small')

pos_est0 = data.get_veh_belief(0)
pos_updt0 = data.get_updt_veh_belief(0)
pos_pred0 = data.get_pred_veh_belief(0)
pos_est1 = data.get_veh_belief(1)
pos_updt1 = data.get_updt_veh_belief(1)
pos_pred1 = data.get_pred_veh_belief(1)

# plt.figure(2)
# plt.plot(np.concatenate(([None], np.array(meas[0].mean_veh[0][1]).flatten()), axis=0), 'b',
コード例 #4
0
def icp():

    global count, Gps_x0, Gps_y0, Gps_x1, Gps_y1, veh, fea, data
    if icp_bool:
        msg2 = ''' ( ICP Activated ) '''
    if not icp_bool:
        msg2 = ''' ( ICP De-Activated ) '''
    print "-------------------------------- ****** Run " + str(count) + str(
        msg2) + " ****** --------------------------------"
    if count == 0:
        n_v = 2
        n_f = 1
        p1 = np.matrix([[Gps_x0], [Gps_y0], [0], [0]])
        p2 = np.matrix([[Gps_x1], [Gps_y1], [0], [0]])
        cov1 = np.matrix('10 0 0 0; ' '0 10 0 0; ' '0 0 1 0; ' '0 0 0 1')
        cov2 = np.matrix('10 0 0 0; ' '0 10 0 0; ' '0 0 1 0; ' '0 0 0 1')
        init_veh_distr = [
            Distribution.Distribution(p1, cov1),
            Distribution.Distribution(p2, cov2)
        ]
        p3 = np.matrix('1.7; 0.5')
        cov3 = np.matrix('10 0; 0 10')
        init_feat_distr = [Distribution.Distribution(p3, cov3)]
        q0 = 1.0e-2
        q1 = 1.0e-2
        var_init = [q0, q1]
        data = DataCollect.DataCollect(n_v, n_f)
        data.init(n_v, n_f, init_veh_distr, init_feat_distr)
        veh = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr,
                                 var_init)

    count = count + 1
    start_time = rospy.get_time()
    if (Gps_x0 and Gps_x1 and Gps_y0 and Gps_y1) is not None:
        mean_v = [
            np.matrix([[Gps_x0], [Gps_y0]]),
            np.matrix([[Gps_x1], [Gps_y1]])
        ]
        mean_f = [[
            np.matrix([[float(feat11_x) / 1000], [float(feat11_y) / 1000]]),
            np.matrix([[float(feat21_x) / 1000], [float(feat21_y) / 1000]])
        ]]
        #data = DataCollect.DataCollect(2, 1)
        meas = me.MeasurementMixer(2, 1, mean_v, mean_f)
        print "Feature 1 Measurement X = " + str(float(
            meas.meas_fea[0][0][0])) + " , Y = " + str(
                float(meas.meas_fea[0][0][1]))
        print "Feature 2 Measurement X = " + str(float(
            meas.meas_fea[0][1][0])) + " , Y = " + str(
                float(meas.meas_fea[0][1][1]))
        print "Vehicle 1 Measurement X = " + str(float(
            meas.meas_veh[0][0])) + " , Y = " + str(float(meas.meas_veh[0][1]))
        print "Vehicle 2 Measurement X = " + str(float(
            meas.meas_veh[1][0])) + " , Y = " + str(float(meas.meas_veh[1][1]))
        #print v
        #print "Feature in callback" + str(fea)
        for v in veh:
            v.update_time_step(T_s)
        algorithm.main_loop(veh, meas, 2, 1, data)
        actual1 = data.get_veh_belief(0)
        actual2 = data.get_veh_belief(1)
        last_x0 = actual1[0][-1]
        last_y0 = actual1[1][-1]
        last_x1 = actual2[0][-1]
        last_y1 = actual2[1][-1]
        x_coord0 = float(meas.meas_veh[0][0])
        y_coord0 = float(meas.meas_veh[0][1])
        x_coord1 = float(meas.meas_veh[1][0])
        y_coord1 = float(meas.meas_veh[1][1])

        print 'Vehicle 1 ICP X = ' + str(last_x0) + ', Y = ' + str(last_y0)
        print 'Vehicle 2 ICP X = ' + str(last_x1) + ', Y = ' + str(last_y1)
        global T_s
        stop_time = rospy.get_time()
        # T_s = stop_time - start_time
        print T_s, "Sampling Time"
        print str(count) + "Runs"

        vehicle0 = Vehicle()
        vehicle0.heading = angle0
        vehicle0.header.stamp = rospy.get_rostime()
        vehicle0.x_meas = x_coord0
        vehicle0.y_meas = y_coord0
        vehicle0.x_icp = last_x0
        vehicle0.y_icp = last_y0
        vehicle0.x_actual_meas = Gps_x0
        vehicle0.y_actual_meas = Gps_y0

        vehicle1 = Vehicle()
        vehicle1.heading = angle1
        vehicle1.header.stamp = rospy.get_rostime()
        vehicle1.x_meas = x_coord1
        vehicle1.y_meas = y_coord1
        vehicle1.x_icp = last_x1
        vehicle1.y_icp = last_y1
        vehicle1.x_actual_meas = Gps_x1
        vehicle1.y_actual_meas = Gps_y1

        pub0 = rospy.Publisher("Robot0/config", Vehicle, queue_size=10)
        pub1 = rospy.Publisher("Robot1/config", Vehicle, queue_size=10)
        pub0.publish(vehicle0)
        pub1.publish(vehicle1)
        print "Heading Angle Robot 0: " + str(angle0)
        print "Heading Angle Robot 1: " + str(angle1)
コード例 #5
0
            Distribution.Distribution(init_veh_distr2mean, cov2)
        ]
        init_feat_distr = []
        for f in range(n_f):
            init_feat_distr_mean = np.reshape(
                np.random.multivariate_normal(np.array(p3).flatten(), cov3, 1),
                [2, 1])
            init_feat_distr.append(
                Distribution.Distribution(init_feat_distr_mean, cov3))

        meas[run] = me.Measurement(n_v, n_f, 1)
        dataICP[run] = DataCollect.DataCollect(n_v, n_f)
        dataICP[run].init(n_v, n_f, init_veh_distr, init_feat_distr[:n_f])
        v = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr[:n_f],
                               var_init)
        algorithm.main_loop(v, meas[run], N_mp, 1, dataICP[run])
        for k in range(n_v):
            error_square[k][run] = np.power(
                dataICP[run].get_veh_belief(k)[:2, :] - meas[run].mean_veh[k],
                2)
            error_distance[k][run] = np.sum(error_square[k][run], axis=0)
    for l in range(n_v):
        error[l] = np.sqrt(np.mean(error_square[l], axis=0))
        error_mean_norm[l] = np.sqrt(np.mean(error_distance[l], axis=0))

    with open(
            '/home/tomek/TheTitans/ICP/Pickles/errorICP' + str(n_v) + '_' +
            str(n_f) + '_' + str(meas[0].vehicle(0, 0).get_cov()[0, 0]) + '_' +
            str(meas[0].vehicle(1, 0).get_cov()[0, 0]) + '_' +
            str(meas[0].feature(0, 0, 0).get_cov()[0, 0]) + '_' + str(runs) +
            '_' + str(N_mp) + '.pickle', 'wb') as output:
コード例 #6
0
    p3 = np.matrix('0.5; 0.5')
    cov3 = np.matrix('5 0; 0 5')
    init_feat_distr = [Distribution.Distribution(p3, cov3)]

    data.init(2, 1, init_veh_distr, init_feat_distr)

    var_pos1 = 2
    var_pos2 = 2
    var_init = [[var_pos1, var_pos1], [var_pos2, var_pos2]]

    while count < 1000:
        meas = me.Measurement(2, 1)
        v = algorithm.init_veh(2, 1, init_veh_distr, var_init)
        f = algorithm.init_feat(1, 2, init_feat_distr)
        algorithm.main_loop(v, f, meas, 7, 1, data)
        ++count

    x_pos_est0, y_pos_est0 = data.get_veh_belief(0)
    x_pos_pred0, y_pos_pred0 = data.get_pred_veh_belief(0)
    x_pos_est1, y_pos_est1 = data.get_veh_belief(1)
    x_pos_pred1, y_pos_pred1 = data.get_pred_veh_belief(1)

    error0 = [
        Kalman.rmse(data.get_veh_belief(0)[0][1:], meas.mean_veh[0][0]),
        Kalman.rmse(data.get_veh_belief(0)[1][1:], meas.mean_veh[0][1])
    ]
    errorP0 = [
        np.sqrt(v[0].pos_belief.get_cov()[0, 0]),
        np.sqrt(v[0].pos_belief.get_cov()[1, 1])
    ]
コード例 #7
0
def callback(pos, pos2):
    global count
    count = count + 1
    start_time = rospy.get_time()
    #print "Inside Callback"
    srv1 = 'get_coord0'
    srv2 = 'get_coord1'
    #Gps_x1, Gps_y1, Gps_x2, Gps_y2 = 0
    rospy.wait_for_service(srv1)
    try:
        get_coords1 = rospy.ServiceProxy(srv1, GetCoord)
        f = get_coords1(1)
        tmp_pos1 = f.data.data
        error_count = 0
        while error_count < 10:
            if np.size(tmp_pos1) != 3:
                Gps_x1 = tmp_pos1[0]
                Gps_y1 = tmp_pos1[1]
                error_count = 11
            else:
                error_count += 1
                Gps_x1 = None
                Gps_y1 = None
    except rospy.ServiceException as exc1:
        print("Service1 did not process request: " + str(exc1))

    rospy.wait_for_service(srv2)
    error_count = 0
    try:
        get_coords2 = rospy.ServiceProxy(srv2, GetCoord)
        f = get_coords2(1)
        tmp_pos2 = f.data.data
        while error_count < 10:
            if np.size(tmp_pos2) != 3:
                Gps_x2 = tmp_pos2[0]
                Gps_y2 = tmp_pos2[1]
                error_count = 11
            else:
                error_count += 1
                Gps_x2 = None
                Gps_y2 = None
    except rospy.ServiceException as exc2:
        print("Service2 did not process request: " + str(exc2))

    if (Gps_x1 and Gps_x2 and Gps_y1 and Gps_y2) is not None:
        mean_v = [
            np.matrix([[Gps_x1], [Gps_y1]]),
            np.matrix([[Gps_x2], [Gps_y2]])
        ]
        mean_f = [[
            np.matrix([[float(pos.x1) / 1000], [float(pos.y1) / 1000]]),
            np.matrix([[float(pos2.x1) / 1000], [float(pos2.y1) / 1000]])
        ]]
        #data = DataCollect.DataCollect(2, 1)

        T_s = 0.1
        meas = me.MeasurementMixer(2, 1, mean_v, mean_f)
        print "Feature 1 Measurement X = " + str(float(
            meas.meas_fea[0][0][0])) + " , Y = " + str(
                float(meas.meas_fea[0][0][1]))
        print "Feature 2 Measurement X = " + str(float(
            meas.meas_fea[0][1][1])) + " , Y = " + str(
                float(meas.meas_fea[0][1][1]))
        print "Vehicle 1 Measurement X = " + str(float(
            meas.meas_veh[0][0])) + " , Y = " + str(float(meas.meas_veh[0][1]))
        print "Vehicle 2 Measurement X = " + str(float(
            meas.meas_veh[1][0])) + " , Y = " + str(float(meas.meas_veh[1][1]))
        #print v
        #print "Feature in callback" + str(fea)
        algorithm.main_loop(veh, fea, meas, 7, 1, data)
        actual1 = data.get_veh_belief(0)
        actual2 = data.get_veh_belief(1)
        last_x = actual1[0][-1]
        last_y = actual1[1][-1]
        last_x2 = actual2[0][-1]
        last_y2 = actual2[1][-1]

        print 'Vehicle 1 ICP X = ' + str(last_x) + ', Y = ' + str(last_y)
        print 'Vehicle 2 ICP X = ' + str(last_x2) + ', Y = ' + str(last_y2)
        global T_s
        stop_time = rospy.get_time()
        T_s = stop_time - start_time
        print T_s, "Sampling Time"
        print str(count) + "Runs"