コード例 #1
0
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # load demo replay memory
            demos = self._load_demos()

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params["N_STEP"],
                    self.hyper_params["GAMMA"])

                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params["BUFFER_SIZE"],
                    n_step=self.hyper_params["N_STEP"],
                    gamma=self.hyper_params["GAMMA"],
                    demo=demos_n_step,
                )

            # replay memory
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                demo=demos,
                alpha=self.hyper_params["PER_ALPHA"],
                epsilon_d=self.hyper_params["PER_EPS_DEMO"],
            )
コード例 #2
0
    def _initialize(self):
        """Initialize non-common things."""
        self.use_n_step = self.hyper_params["N_STEP"] > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params["N_STEP"], self.hyper_params["GAMMA"]
                )

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params["BUFFER_SIZE"],
                    n_step=self.hyper_params["N_STEP"],
                    gamma=self.hyper_params["GAMMA"],
                    demo=demos_n_step,
                )

            # replay memory for a single step
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                demo=demos,
                alpha=self.hyper_params["PER_ALPHA"],
                epsilon_d=self.hyper_params["PER_EPS_DEMO"],
            )
コード例 #3
0
 def _initialize(self):
     """Initialize non-common things."""
     if not self.args.test:
         # replay memory
         self.beta = self.hyper_params["PER_BETA"]
         self.memory = PrioritizedReplayBuffer(
             self.hyper_params["BUFFER_SIZE"],
             self.hyper_params["BATCH_SIZE"],
             alpha=self.hyper_params["PER_ALPHA"],
         )
コード例 #4
0
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory for a single step
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                alpha=self.hyper_params["PER_ALPHA"],
            )

            # replay memory for multi-steps
            if self.use_n_step:
                self.memory_n = NStepTransitionBuffer(
                    self.hyper_params["BUFFER_SIZE"],
                    n_step=self.hyper_params["N_STEP"],
                    gamma=self.hyper_params["GAMMA"],
                )
コード例 #5
0
class DQfDAgent(DQNAgent):
    """DQN interacting with environment.

    Attribute:
        memory (PrioritizedReplayBuffer): replay memory

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # load demo replay memory
            demos = self._load_demos()

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params["N_STEP"],
                    self.hyper_params["GAMMA"])

                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params["BUFFER_SIZE"],
                    n_step=self.hyper_params["N_STEP"],
                    gamma=self.hyper_params["GAMMA"],
                    demo=demos_n_step,
                )

            # replay memory
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                demo=demos,
                alpha=self.hyper_params["PER_ALPHA"],
                epsilon_d=self.hyper_params["PER_EPS_DEMO"],
            )

    def _load_demos(self) -> list:
        """Load expert's demonstrations."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demos = pickle.load(f)

        return demos

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences_1 = self.memory.sample()
        weights, indices, eps_d = experiences_1[-3:]
        actions = experiences_1[1]

        # 1 step loss
        gamma = self.hyper_params["GAMMA"]
        dq_loss_element_wise, q_values = self._get_dqn_loss(
            experiences_1, gamma)
        dq_loss = torch.mean(dq_loss_element_wise * weights)

        # n step loss
        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            gamma = self.hyper_params["GAMMA"]**self.hyper_params["N_STEP"]
            dq_loss_n_element_wise, q_values_n = self._get_dqn_loss(
                experiences_n, gamma)

            # to update loss and priorities
            q_values = 0.5 * (q_values + q_values_n)
            dq_loss_element_wise += (dq_loss_n_element_wise *
                                     self.hyper_params["LAMBDA1"])
            dq_loss = torch.mean(dq_loss_element_wise * weights)

        # supervised loss using demo for only demo transitions
        demo_idxs = np.where(eps_d != 0.0)
        n_demo = demo_idxs[0].size
        if n_demo != 0:  # if 1 or more demos are sampled
            # get margin for each demo transition
            action_idxs = actions[demo_idxs].long()
            margin = torch.ones(q_values.size()) * self.hyper_params["MARGIN"]
            margin[demo_idxs, action_idxs] = 0.0  # demo actions have 0 margins
            margin = margin.to(device)

            # calculate supervised loss
            demo_q_values = q_values[demo_idxs, action_idxs].squeeze()
            supervised_loss = torch.max(q_values + margin, dim=-1)[0]
            supervised_loss = supervised_loss[demo_idxs] - demo_q_values
            supervised_loss = torch.mean(
                supervised_loss) * self.hyper_params["LAMBDA2"]
        else:  # no demo sampled
            supervised_loss = torch.zeros(1, device=device)

        # q_value regularization
        q_regular = torch.norm(q_values,
                               2).mean() * self.hyper_params["W_Q_REG"]

        # total loss
        loss = dq_loss + supervised_loss + q_regular

        # train dqn
        self.dqn_optimizer.zero_grad()
        loss.backward()
        clip_grad_norm_(self.dqn.parameters(),
                        self.hyper_params["GRADIENT_CLIP"])
        self.dqn_optimizer.step()

        # update target networks
        tau = self.hyper_params["TAU"]
        common_utils.soft_update(self.dqn, self.dqn_target, tau)

        # update priorities in PER
        loss_for_prior = dq_loss_element_wise.detach().cpu().numpy().squeeze()
        new_priorities = loss_for_prior + self.hyper_params["PER_EPS"]
        new_priorities += eps_d
        self.memory.update_priorities(indices, new_priorities)

        # increase beta
        fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
        self.beta = self.beta + fraction * (1.0 - self.beta)

        if self.hyper_params["USE_NOISY_NET"]:
            self.dqn.reset_noise()
            self.dqn_target.reset_noise()

        return (
            loss.item(),
            dq_loss.item(),
            supervised_loss.item(),
            q_values.mean().item(),
            n_demo,
        )

    def write_log(self, i: int, avg_loss: np.ndarray, score: float,
                  avg_time_cost: float):
        """Write log about loss and score"""
        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %f\n"
            "epsilon: %f, total loss: %f, dq loss: %f, supervised loss: %f\n"
            "avg q values: %f, demo num in minibatch: %d (spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                self.epsilon,
                avg_loss[0],
                avg_loss[1],
                avg_loss[2],
                avg_loss[3],
                avg_loss[4],
                avg_time_cost,
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "epsilon": self.epsilon,
                "total loss": avg_loss[0],
                "dq loss": avg_loss[1],
                "supervised loss": avg_loss[2],
                "avg q values": avg_loss[3],
                "demo num in minibatch": avg_loss[4],
                "time per each step": avg_time_cost,
            })

    def pretrain(self):
        """Pretraining steps."""
        pretrain_loss = list()
        print("[INFO] Pre-Train %d step." % self.hyper_params["PRETRAIN_STEP"])
        for i_step in range(1, self.hyper_params["PRETRAIN_STEP"] + 1):
            t_begin = time.time()
            loss = self.update_model()
            t_end = time.time()
            pretrain_loss.append(loss)  # for logging

            # logging
            if i_step == 1 or i_step % 100 == 0:
                avg_loss = np.vstack(pretrain_loss).mean(axis=0)
                pretrain_loss.clear()
                self.write_log(0, avg_loss, 0.0, t_end - t_begin)
        print("[INFO] Pre-Train Complete!\n")
コード例 #6
0
class DQNAgent(Agent):
    """DQN interacting with environment.

    Attribute:
        memory (PrioritizedReplayBuffer): replay memory
        dqn (nn.Module): actor model to select actions
        dqn_target (nn.Module): target actor model to select actions
        dqn_optimizer (Optimizer): optimizer for training actor
        hyper_params (dict): hyper-parameters
        beta (float): beta parameter for prioritized replay buffer
        curr_state (np.ndarray): temporary storage of the current state
        total_step (int): total step number
        episode_step (int): step number of the current episode
        epsilon (float): parameter for epsilon greedy policy
        i_episode (int): current episode number
        n_step_buffer (deque): n-size buffer to calculate n-step returns
        use_n_step (bool): whether or not to use n-step returns

    """

    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        hyper_params: dict,
        models: tuple,
        optim: torch.optim.Adam,
    ):
        """Initialization.

        Args:
            env (gym.Env): openAI Gym environment
            args (argparse.Namespace): arguments including hyperparameters and training settings
            hyper_params (dict): hyper-parameters
            models (tuple): models including main network and target
            optim (torch.optim.Adam): optimizers for dqn

        """
        Agent.__init__(self, env, args)

        self.use_n_step = hyper_params["N_STEP"] > 1
        self.epsilon = hyper_params["MAX_EPSILON"]
        self.dqn, self.dqn_target = models
        self.hyper_params = hyper_params
        self.curr_state = np.zeros(1)
        self.dqn_optimizer = optim
        self.episode_step = 0
        self.total_step = 0
        self.i_episode = 0

        # load the optimizer and model parameters
        if args.load_from is not None and os.path.exists(args.load_from):
            self.load_params(args.load_from)

        self._initialize()

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory for a single step
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                alpha=self.hyper_params["PER_ALPHA"],
            )

            # replay memory for multi-steps
            if self.use_n_step:
                self.memory_n = NStepTransitionBuffer(
                    self.hyper_params["BUFFER_SIZE"],
                    n_step=self.hyper_params["N_STEP"],
                    gamma=self.hyper_params["GAMMA"],
                )

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        self.curr_state = state

        # epsilon greedy policy
        # pylint: disable=comparison-with-callable
        if not self.args.test and self.epsilon > np.random.random():
            selected_action = self.env.action_space.sample()
        else:
            state = self._preprocess_state(state)
            selected_action = self.dqn(state).argmax()
            selected_action = selected_action.detach().cpu().numpy()
        return selected_action

    # pylint: disable=no-self-use
    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        state = torch.FloatTensor(state).to(device)
        return state

    def step(self, action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool, dict]:
        """Take an action and return the response of the env."""
        next_state, reward, done, info = self.env.step(action)

        if not self.args.test:
            # if the last state is not a terminal state, store done as false
            done_bool = (
                False if self.episode_step == self.args.max_episode_steps else done
            )

            transition = (self.curr_state, action, reward, next_state, done_bool)
            self._add_transition_to_memory(transition)

        return next_state, reward, done, info

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(*transition)

    def _get_dqn_loss(
        self, experiences: Tuple[torch.Tensor, ...], gamma: float
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Return element-wise dqn loss and Q-values."""

        if self.hyper_params["USE_DIST_Q"] == "IQN":
            return dqn_utils.calculate_iqn_loss(
                model=self.dqn,
                target_model=self.dqn_target,
                experiences=experiences,
                gamma=gamma,
                batch_size=self.hyper_params["BATCH_SIZE"],
                n_tau_samples=self.hyper_params["N_TAU_SAMPLES"],
                n_tau_prime_samples=self.hyper_params["N_TAU_PRIME_SAMPLES"],
                kappa=self.hyper_params["KAPPA"],
            )
        elif self.hyper_params["USE_DIST_Q"] == "C51":
            return dqn_utils.calculate_c51_loss(
                model=self.dqn,
                target_model=self.dqn_target,
                experiences=experiences,
                gamma=gamma,
                batch_size=self.hyper_params["BATCH_SIZE"],
                v_min=self.hyper_params["V_MIN"],
                v_max=self.hyper_params["V_MAX"],
                atom_size=self.hyper_params["ATOMS"],
            )
        else:
            return dqn_utils.calculate_dqn_loss(
                model=self.dqn,
                target_model=self.dqn_target,
                experiences=experiences,
                gamma=gamma,
            )

    def update_model(self) -> Tuple[torch.Tensor, torch.Tensor]:
        """Train the model after each episode."""
        # 1 step loss
        experiences_1 = self.memory.sample(self.beta)
        weights, indices = experiences_1[-2:]
        gamma = self.hyper_params["GAMMA"]
        dq_loss_element_wise, q_values = self._get_dqn_loss(experiences_1, gamma)
        dq_loss = torch.mean(dq_loss_element_wise * weights)

        # n step loss
        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            gamma = self.hyper_params["GAMMA"] ** self.hyper_params["N_STEP"]
            dq_loss_n_element_wise, q_values_n = self._get_dqn_loss(
                experiences_n, gamma
            )

            # to update loss and priorities
            q_values = 0.5 * (q_values + q_values_n)
            dq_loss_element_wise += (
                dq_loss_n_element_wise * self.hyper_params["W_N_STEP"]
            )
            dq_loss = torch.mean(dq_loss_element_wise * weights)

        # q_value regularization
        q_regular = torch.norm(q_values, 2).mean() * self.hyper_params["W_Q_REG"]

        # total loss
        loss = dq_loss + q_regular

        self.dqn_optimizer.zero_grad()
        loss.backward()
        clip_grad_norm_(self.dqn.parameters(), self.hyper_params["GRADIENT_CLIP"])
        self.dqn_optimizer.step()

        # update target networks
        tau = self.hyper_params["TAU"]
        common_utils.soft_update(self.dqn, self.dqn_target, tau)

        # update priorities in PER
        loss_for_prior = dq_loss_element_wise.detach().cpu().numpy()
        new_priorities = loss_for_prior + self.hyper_params["PER_EPS"]
        self.memory.update_priorities(indices, new_priorities)

        # increase beta
        fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
        self.beta = self.beta + fraction * (1.0 - self.beta)

        if self.hyper_params["USE_NOISY_NET"]:
            self.dqn.reset_noise()
            self.dqn_target.reset_noise()

        return loss.item(), q_values.mean().item()

    def load_params(self, path: str):
        """Load model and optimizer parameters."""
        if not os.path.exists(path):
            print("[ERROR] the input path does not exist. ->", path)
            return

        params = torch.load(path)
        self.dqn.load_state_dict(params["dqn_state_dict"])
        self.dqn_target.load_state_dict(params["dqn_target_state_dict"])
        self.dqn_optimizer.load_state_dict(params["dqn_optim_state_dict"])
        print("[INFO] loaded the model and optimizer from", path)

    def save_params(self, n_episode: int):
        """Save model and optimizer parameters."""
        params = {
            "dqn_state_dict": self.dqn.state_dict(),
            "dqn_target_state_dict": self.dqn_target.state_dict(),
            "dqn_optim_state_dict": self.dqn_optimizer.state_dict(),
        }

        Agent.save_params(self, params, n_episode)

    def write_log(self, i: int, loss: np.ndarray, score: float, avg_time_cost: float):
        """Write log about loss and score"""
        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %f\n"
            "epsilon: %f, loss: %f, avg q-value: %f (spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                self.epsilon,
                loss[0],
                loss[1],
                avg_time_cost,
            )
        )

        if self.args.log:
            wandb.log(
                {
                    "score": score,
                    "epsilon": self.epsilon,
                    "dqn loss": loss[0],
                    "avg q values": loss[1],
                    "time per each step": avg_time_cost,
                }
            )

    # pylint: disable=no-self-use, unnecessary-pass
    def pretrain(self):
        """Pretraining steps."""
        pass

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            wandb.init(project=self.args.wandb_project)
            wandb.config.update(self.hyper_params)
            # wandb.watch([self.dqn], log="parameters")

        # pre-training if needed
        self.pretrain()

        max_epsilon, min_epsilon, epsilon_decay = (
            self.hyper_params["MAX_EPSILON"],
            self.hyper_params["MIN_EPSILON"],
            self.hyper_params["EPSILON_DECAY"],
        )

        for self.i_episode in range(1, self.args.episode_num + 1):
            state = self.env.reset()
            self.episode_step = 0
            losses = list()
            done = False
            score = 0

            t_begin = time.time()

            while not done:
                if self.args.render and self.i_episode >= self.args.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                if len(self.memory) >= self.hyper_params["UPDATE_STARTS_FROM"]:
                    if self.total_step % self.hyper_params["TRAIN_FREQ"] == 0:
                        for _ in range(self.hyper_params["MULTIPLE_LEARN"]):
                            loss = self.update_model()
                            losses.append(loss)  # for logging

                    # decrease epsilon
                    self.epsilon = max(
                        self.epsilon - (max_epsilon - min_epsilon) * epsilon_decay,
                        min_epsilon,
                    )

                state = next_state
                score += reward

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            if losses:
                avg_loss = np.vstack(losses).mean(axis=0)
                self.write_log(self.i_episode, avg_loss, score, avg_time_cost)

            if self.i_episode % self.args.save_period == 0:
                self.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.save_params(self.i_episode)
        self.interim_test()
コード例 #7
0
class Agent(AbstractAgent):
    """DQN interacting with environment.

    Attribute:
        memory (PrioritizedReplayBuffer): replay memory
        dqn (nn.Module): actor model to select actions
        dqn_target (nn.Module): target actor model to select actions
        dqn_optimizer (Optimizer): optimizer for training actor
        hyper_params (dict): hyper-parameters
        beta (float): beta parameter for prioritized replay buffer
        curr_state (np.ndarray): temporary storage of the current state
        total_steps (np.ndarray): total step numbers
        episode_steps (np.ndarray): step number of the current episode
        epsilon (float): parameter for epsilon greedy policy
        i_episode (int): current episode number

    """
    def __init__(
        self,
        env_single: gym.Env,
        env_multi: SubprocVecEnv,
        args: argparse.Namespace,
        hyper_params: dict,
        models: tuple,
        optim: torch.optim.Adam,
    ):
        """Initialization.

        Args:
            env_single (gym.Env): openAI Gym environment
            env_multi (SubprocVecEnv): Gym env with multiprocessing for training
            args (argparse.Namespace): arguments including hyperparameters and training settings
            hyper_params (dict): hyper-parameters
            models (tuple): models including main network and target
            optim (torch.optim.Adam): optimizers for dqn

        """
        AbstractAgent.__init__(self, env_single, args)

        if not self.args.test:
            self.env = env_multi
        self.dqn, self.dqn_target = models
        self.dqn_optimizer = optim
        self.hyper_params = hyper_params
        self.curr_state = np.zeros((1, ))
        self.total_steps = np.zeros(hyper_params["N_WORKERS"], dtype=np.int)
        self.episode_steps = np.zeros(hyper_params["N_WORKERS"], dtype=np.int)
        self.epsilon = self.hyper_params["MAX_EPSILON"]
        self.i_episode = 0

        # load the optimizer and model parameters
        if args.load_from is not None and os.path.exists(args.load_from):
            self.load_params(args.load_from)

        self._initialize()

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                alpha=self.hyper_params["PER_ALPHA"],
            )

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        self.curr_state = state

        # epsilon greedy policy
        # pylint: disable=comparison-with-callable
        if not self.args.test and self.epsilon > np.random.random():
            selected_action = self.env.sample()
        else:
            state = torch.FloatTensor(state).to(device)
            selected_action = self.dqn(state, self.epsilon).argmax(dim=-1)
            selected_action = selected_action.detach().cpu().numpy()
        return selected_action

    def step(self, action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool]:
        """Take an action and return the response of the env."""
        self.total_steps += 1
        self.episode_steps += 1

        next_state, reward, done, _ = self.env.step(action)

        if not self.args.test:
            # if the last state is not a terminal state, store done as false
            done_bool = done.copy()
            done_bool[np.where(
                self.episode_steps == self.args.max_episode_steps)] = False

            action = action.tolist()
            reward = reward.tolist()
            done_bool = done_bool.tolist()

            for s, a, r, n_s, d in zip(self.curr_state, action, reward,
                                       next_state, done_bool):
                self.memory.add(s, a, r, n_s, d)

        return next_state, reward, done

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences = self.memory.sample(self.beta)
        states, actions, rewards, next_states, dones, weights, indexes = experiences

        q_values = self.dqn(states, self.epsilon)
        next_q_values = self.dqn(next_states, self.epsilon)
        next_target_q_values = self.dqn_target(next_states, self.epsilon)

        curr_q_value = q_values.gather(1, actions.long().unsqueeze(1))
        next_q_value = next_target_q_values.gather(  # Double DQN
            1,
            next_q_values.argmax(1).unsqueeze(1))

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        masks = 1 - dones
        target = rewards + self.hyper_params["GAMMA"] * next_q_value * masks
        target = target.to(device)

        # calculate dq loss
        dq_loss_element_wise = (target - curr_q_value).pow(2)
        dq_loss = torch.mean(dq_loss_element_wise * weights)

        # q_value regularization
        q_regular = torch.norm(q_values,
                               2).mean() * self.hyper_params["W_Q_REG"]

        # total loss
        loss = dq_loss + q_regular

        self.dqn_optimizer.zero_grad()
        loss.backward()
        clip_grad_norm_(self.dqn.parameters(),
                        self.hyper_params["GRADIENT_CLIP"])
        self.dqn_optimizer.step()

        # update target networks
        tau = self.hyper_params["TAU"]
        common_utils.soft_update(self.dqn, self.dqn_target, tau)

        # update priorities in PER
        loss_for_prior = dq_loss_element_wise.detach().cpu().numpy().squeeze()
        new_priorities = loss_for_prior + self.hyper_params["PER_EPS"]
        self.memory.update_priorities(indexes, new_priorities)

        # increase beta
        fraction = min(
            float(self.i_episode) / self.args.max_episode_steps, 1.0)
        self.beta = self.beta + fraction * (1.0 - self.beta)

        return loss.data

    def load_params(self, path: str):
        """Load model and optimizer parameters."""
        if not os.path.exists(path):
            print("[ERROR] the input path does not exist. ->", path)
            return

        params = torch.load(path)
        self.dqn.load_state_dict(params["dqn_state_dict"])
        self.dqn_target.load_state_dict(params["dqn_target_state_dict"])
        self.dqn_optimizer.load_state_dict(params["dqn_optim_state_dict"])
        print("[INFO] loaded the model and optimizer from", path)

    def save_params(self, n_episode: int):
        """Save model and optimizer parameters."""
        params = {
            "dqn_state_dict": self.dqn.state_dict(),
            "dqn_target_state_dict": self.dqn_target.state_dict(),
            "dqn_optim_state_dict": self.dqn_optimizer.state_dict(),
        }

        AbstractAgent.save_params(self, params, n_episode)

    def write_log(self, i: int, loss: np.ndarray, score: int):
        """Write log about loss and score"""
        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %d\n"
            "epsilon: %f, loss: %f, at %s\n" % (
                i,
                self.episode_steps[0],
                self.total_steps.sum(),
                score,
                self.epsilon,
                loss,
                datetime.datetime.now(),
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "dqn loss": loss,
                "epsilon": self.epsilon
            })

    # pylint: disable=no-self-use, unnecessary-pass
    def pretrain(self):
        """Pretraining steps."""
        pass

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            wandb.init()
            wandb.config.update(self.hyper_params)
            # wandb.watch([self.dqn], log="parameters")

        # pre-training if needed
        self.pretrain()

        state = self.env.reset()
        i_episode_prev = 0
        losses = list()
        i_episode = 0
        score = 0

        while i_episode <= self.args.episode_num:
            if self.args.render and i_episode >= self.args.render_after:
                self.env.render()

            action = self.select_action(state)
            next_state, reward, done = self.step(action)

            state = next_state
            score += reward[0]
            i_episode_prev = i_episode
            i_episode += done.sum()
            self.i_episode = i_episode

            if (i_episode // self.args.save_period) != (i_episode_prev //
                                                        self.args.save_period):
                self.save_params(i_episode)

            if done[0]:
                if losses:
                    avg_loss = np.vstack(losses).mean(axis=0)
                    self.write_log(i_episode, avg_loss, score)
                    losses.clear()
                score = 0

            self.episode_steps[np.where(done)] = 0

            if len(self.memory) >= self.hyper_params["UPDATE_STARTS_FROM"]:
                for _ in range(self.hyper_params["MULTIPLE_LEARN"]):
                    loss = self.update_model()
                    losses.append(loss)  # for logging

                # decrease epsilon
                max_epsilon, min_epsilon, epsilon_decay, n_workers = (
                    self.hyper_params["MAX_EPSILON"],
                    self.hyper_params["MIN_EPSILON"],
                    self.hyper_params["EPSILON_DECAY"],
                    self.hyper_params["N_WORKERS"],
                )
                self.epsilon = max(
                    self.epsilon -
                    (max_epsilon - min_epsilon) * epsilon_decay * n_workers,
                    min_epsilon,
                )

        # termination
        self.env.close()
        self.save_params(i_episode)
コード例 #8
0
class DDPGfDAgent(DDPGAgent):
    """ActorCritic interacting with environment.

    Attributes:
        memory (PrioritizedReplayBuffer): replay memory
        beta (float): beta parameter for prioritized replay buffer

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        self.use_n_step = self.hyper_params["N_STEP"] > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params["N_STEP"], self.hyper_params["GAMMA"]
                )

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params["BUFFER_SIZE"],
                    n_step=self.hyper_params["N_STEP"],
                    gamma=self.hyper_params["GAMMA"],
                    demo=demos_n_step,
                )

            # replay memory for a single step
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                demo=demos,
                alpha=self.hyper_params["PER_ALPHA"],
                epsilon_d=self.hyper_params["PER_EPS_DEMO"],
            )

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(transition)

    def _get_critic_loss(
        self, experiences: Tuple[torch.Tensor, ...], gamma: float
    ) -> torch.Tensor:
        """Return element-wise critic loss."""
        states, actions, rewards, next_states, dones = experiences[:5]

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        masks = 1 - dones
        next_actions = self.actor_target(next_states)
        next_states_actions = torch.cat((next_states, next_actions), dim=-1)
        next_values = self.critic_target(next_states_actions)
        curr_returns = rewards + gamma * next_values * masks
        curr_returns = curr_returns.to(device).detach()

        # train critic
        values = self.critic(torch.cat((states, actions), dim=-1))
        critic_loss_element_wise = (values - curr_returns).pow(2)

        return critic_loss_element_wise

    def update_model(self) -> Tuple[torch.Tensor, torch.Tensor]:
        """Train the model after each episode."""
        experiences_1 = self.memory.sample(self.beta)
        states, actions = experiences_1[:2]
        weights, indices, eps_d = experiences_1[-3:]
        gamma = self.hyper_params["GAMMA"]

        # train critic
        gradient_clip_cr = self.hyper_params["GRADIENT_CLIP_CR"]
        critic_loss_element_wise = self._get_critic_loss(experiences_1, gamma)
        critic_loss = torch.mean(critic_loss_element_wise * weights)

        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            gamma = gamma ** self.hyper_params["N_STEP"]
            critic_loss_n_element_wise = self._get_critic_loss(experiences_n, gamma)
            # to update loss and priorities
            lambda1 = self.hyper_params["LAMBDA1"]
            critic_loss_element_wise += critic_loss_n_element_wise * lambda1
            critic_loss = torch.mean(critic_loss_element_wise * weights)

        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        nn.utils.clip_grad_norm_(self.critic.parameters(), gradient_clip_cr)
        self.critic_optimizer.step()

        # train actor
        gradient_clip_ac = self.hyper_params["GRADIENT_CLIP_AC"]
        actions = self.actor(states)
        actor_loss_element_wise = -self.critic(torch.cat((states, actions), dim=-1))
        actor_loss = torch.mean(actor_loss_element_wise * weights)
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        nn.utils.clip_grad_norm_(self.actor.parameters(), gradient_clip_ac)
        self.actor_optimizer.step()

        # update target networks
        tau = self.hyper_params["TAU"]
        common_utils.soft_update(self.actor, self.actor_target, tau)
        common_utils.soft_update(self.critic, self.critic_target, tau)

        # update priorities
        new_priorities = critic_loss_element_wise
        new_priorities += self.hyper_params["LAMBDA3"] * actor_loss_element_wise.pow(2)
        new_priorities += self.hyper_params["PER_EPS"]
        new_priorities = new_priorities.data.cpu().numpy().squeeze()
        new_priorities += eps_d
        self.memory.update_priorities(indices, new_priorities)

        # increase beta
        fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
        self.beta = self.beta + fraction * (1.0 - self.beta)

        return actor_loss.item(), critic_loss.item()

    def pretrain(self):
        """Pretraining steps."""
        pretrain_loss = list()
        print("[INFO] Pre-Train %d step." % self.hyper_params["PRETRAIN_STEP"])
        for i_step in range(1, self.hyper_params["PRETRAIN_STEP"] + 1):
            t_begin = time.time()
            loss = self.update_model()
            t_end = time.time()
            pretrain_loss.append(loss)  # for logging

            # logging
            if i_step == 1 or i_step % 100 == 0:
                avg_loss = np.vstack(pretrain_loss).mean(axis=0)
                pretrain_loss.clear()
                self.write_log(0, avg_loss, 0, t_end - t_begin)
        print("[INFO] Pre-Train Complete!\n")
コード例 #9
0
class SACfDAgent(SACAgent):
    """SAC agent interacting with environment.

    Attrtibutes:
        memory (PrioritizedReplayBuffer): replay memory
        beta (float): beta parameter for prioritized replay buffer

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        self.use_n_step = self.hyper_params["N_STEP"] > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params["N_STEP"],
                    self.hyper_params["GAMMA"])

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params["BUFFER_SIZE"],
                    n_step=self.hyper_params["N_STEP"],
                    gamma=self.hyper_params["GAMMA"],
                    demo=demos_n_step,
                )

            # replay memory
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                demo=demos,
                alpha=self.hyper_params["PER_ALPHA"],
                epsilon_d=self.hyper_params["PER_EPS_DEMO"],
            )

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(transition)

    # pylint: disable=too-many-statements
    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        self.update_step += 1

        experiences = self.memory.sample(self.beta)
        states, actions, rewards, next_states, dones, weights, indices, eps_d = (
            experiences)
        new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states)

        # train alpha
        if self.hyper_params["AUTO_ENTROPY_TUNING"]:
            alpha_loss = torch.mean(
                (-self.log_alpha *
                 (log_prob + self.target_entropy).detach()) * weights)

            self.alpha_optimizer.zero_grad()
            alpha_loss.backward()
            self.alpha_optimizer.step()

            alpha = self.log_alpha.exp()
        else:
            alpha_loss = torch.zeros(1)
            alpha = self.hyper_params["W_ENTROPY"]

        # Q function loss
        masks = 1 - dones
        gamma = self.hyper_params["GAMMA"]
        q_1_pred = self.qf_1(states, actions)
        q_2_pred = self.qf_2(states, actions)
        v_target = self.vf_target(next_states)
        q_target = rewards + self.hyper_params["GAMMA"] * v_target * masks
        qf_1_loss = torch.mean((q_1_pred - q_target.detach()).pow(2) * weights)
        qf_2_loss = torch.mean((q_2_pred - q_target.detach()).pow(2) * weights)

        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            _, _, rewards, next_states, dones = experiences_n
            gamma = gamma**self.hyper_params["N_STEP"]
            lambda1 = self.hyper_params["LAMBDA1"]
            masks = 1 - dones

            v_target = self.vf_target(next_states)
            q_target = rewards + gamma * v_target * masks
            qf_1_loss_n = torch.mean(
                (q_1_pred - q_target.detach()).pow(2) * weights)
            qf_2_loss_n = torch.mean(
                (q_2_pred - q_target.detach()).pow(2) * weights)

            # to update loss and priorities
            qf_1_loss = qf_1_loss + qf_1_loss_n * lambda1
            qf_2_loss = qf_2_loss + qf_2_loss_n * lambda1

        # V function loss
        v_pred = self.vf(states)
        q_pred = torch.min(self.qf_1(states, new_actions),
                           self.qf_2(states, new_actions))
        v_target = (q_pred - alpha * log_prob).detach()
        vf_loss_element_wise = (v_pred - v_target).pow(2)
        vf_loss = torch.mean(vf_loss_element_wise * weights)

        # train Q functions
        self.qf_1_optimizer.zero_grad()
        qf_1_loss.backward()
        self.qf_1_optimizer.step()

        self.qf_2_optimizer.zero_grad()
        qf_2_loss.backward()
        self.qf_2_optimizer.step()

        # train V function
        self.vf_optimizer.zero_grad()
        vf_loss.backward()
        self.vf_optimizer.step()

        if self.update_step % self.hyper_params["POLICY_UPDATE_FREQ"] == 0:
            # actor loss
            advantage = q_pred - v_pred.detach()
            actor_loss_element_wise = alpha * log_prob - advantage
            actor_loss = torch.mean(actor_loss_element_wise * weights)

            # regularization
            if not self.is_discrete:  # iff the action is continuous
                mean_reg = self.hyper_params["W_MEAN_REG"] * mu.pow(2).mean()
                std_reg = self.hyper_params["W_STD_REG"] * std.pow(2).mean()
                pre_activation_reg = self.hyper_params[
                    "W_PRE_ACTIVATION_REG"] * (pre_tanh_value.pow(2).sum(
                        dim=-1).mean())
                actor_reg = mean_reg + std_reg + pre_activation_reg

                # actor loss + regularization
                actor_loss += actor_reg

            # train actor
            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            self.actor_optimizer.step()

            # update target networks
            common_utils.soft_update(self.vf, self.vf_target,
                                     self.hyper_params["TAU"])

            # update priorities
            new_priorities = vf_loss_element_wise
            new_priorities += self.hyper_params[
                "LAMBDA3"] * actor_loss_element_wise.pow(2)
            new_priorities += self.hyper_params["PER_EPS"]
            new_priorities = new_priorities.data.cpu().numpy().squeeze()
            new_priorities += eps_d
            self.memory.update_priorities(indices, new_priorities)

            # increase beta
            fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
            self.beta = self.beta + fraction * (1.0 - self.beta)
        else:
            actor_loss = torch.zeros(1)

        return (
            actor_loss.item(),
            qf_1_loss.item(),
            qf_2_loss.item(),
            vf_loss.item(),
            alpha_loss.item(),
        )

    def pretrain(self):
        """Pretraining steps."""
        pretrain_loss = list()
        print("[INFO] Pre-Train %d steps." %
              self.hyper_params["PRETRAIN_STEP"])
        for i_step in range(1, self.hyper_params["PRETRAIN_STEP"] + 1):
            t_begin = time.time()
            loss = self.update_model()
            t_end = time.time()
            pretrain_loss.append(loss)  # for logging

            # logging
            if i_step == 1 or i_step % 100 == 0:
                avg_loss = np.vstack(pretrain_loss).mean(axis=0)
                pretrain_loss.clear()
                self.write_log(
                    0,
                    avg_loss,
                    0,
                    policy_update_freq=self.hyper_params["POLICY_UPDATE_FREQ"],
                    avg_time_cost=t_end - t_begin,
                )
        print("[INFO] Pre-Train Complete!\n")
コード例 #10
0
ファイル: ddpg_agent.py プロジェクト: xiaoanshi/rl_algorithms
class PERDDPGAgent(DDPGAgent):
    """ActorCritic interacting with environment.

    Attributes:
        memory (PrioritizedReplayBuffer): replay memory
        beta (float): beta parameter for prioritized replay buffer

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory
            self.beta = self.hyper_params["PER_BETA"]
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params["BUFFER_SIZE"],
                self.hyper_params["BATCH_SIZE"],
                alpha=self.hyper_params["PER_ALPHA"],
            )

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences = self.memory.sample(self.beta)
        states, actions, rewards, next_states, dones, weights, indexes = experiences

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        masks = 1 - dones
        next_actions = self.actor_target(next_states)
        next_values = self.critic_target(
            torch.cat((next_states, next_actions), dim=-1))
        curr_returns = rewards + self.hyper_params[
            "GAMMA"] * next_values * masks
        curr_returns = curr_returns.to(device).detach()

        # train critic
        gradient_clip_cr = self.hyper_params["GRADIENT_CLIP_CR"]
        values = self.critic(torch.cat((states, actions), dim=-1))
        critic_loss_element_wise = (values - curr_returns).pow(2)
        critic_loss = torch.mean(critic_loss_element_wise * weights)
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        nn.utils.clip_grad_norm_(self.critic.parameters(), gradient_clip_cr)
        self.critic_optimizer.step()

        # train actor
        gradient_clip_ac = self.hyper_params["GRADIENT_CLIP_AC"]
        actions = self.actor(states)
        actor_loss_element_wise = -self.critic(
            torch.cat((states, actions), dim=-1))
        actor_loss = torch.mean(actor_loss_element_wise * weights)
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        nn.utils.clip_grad_norm_(self.actor.parameters(), gradient_clip_ac)
        self.actor_optimizer.step()

        # update target networks
        tau = self.hyper_params["TAU"]
        common_utils.soft_update(self.actor, self.actor_target, tau)
        common_utils.soft_update(self.critic, self.critic_target, tau)

        # update priorities in PER
        new_priorities = critic_loss_element_wise
        new_priorities = (new_priorities.data.cpu().numpy() +
                          self.hyper_params["PER_EPS"])
        self.memory.update_priorities(indexes, new_priorities)

        # increase beta
        fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
        self.beta = self.beta + fraction * (1.0 - self.beta)

        return actor_loss.item(), critic_loss.item()