コード例 #1
0
ファイル: ddpg.py プロジェクト: dujinyu/vrep_peg_in_hole
                raise RuntimeError('unknown noise type "{}"'.format(current_noise_type))

    """action scale"""
    max_action = env.action_high_bound
    logger.info('scaling actions by {} before executing in env'.format(max_action))

    """ agent ddpg """
    agent = DDPG(actor, critic, memory, env.observation_space.shape, env.action_space.shape[0],
        gamma=gamma, tau=tau, normalize_returns=normalize_returns, normalize_observations=normalize_observations,
        batch_size=batch_size, action_noise=action_noise, param_noise=param_noise, critic_l2_reg=critic_l2_reg,
        actor_lr=actor_lr, critic_lr=critic_lr, enable_popart=popart, clip_norm=clip_norm, reward_scale=reward_scale)

    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    sess = U.get_session()

    if restore:
        agent.restore(sess, model_path, model_name)
    else:
        agent.initialize(sess)
        sess.graph.finalize()
<<<<<<< HEAD

=======
>>>>>>> 94d55945aa44e90ff2bb8446ffca9eb95c83c036
    agent.reset()

    episodes = 0
    epochs_rewards = np.zeros((nb_epochs, nb_epoch_cycles), dtype=np.float32)
    epochs_times = np.zeros((nb_epochs, nb_epoch_cycles), dtype=np.float32)
コード例 #2
0
def learn(*,
          network,
          env,
          total_timesteps,
          timesteps_per_batch=1024,  # what to train on
          max_kl=0.001,
          cg_iters=10,
          gamma=0.99,
          lam=1.0,  # advantage estimation
          seed=None,
          ent_coef=0.0,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          vf_iters=3,
          max_episodes=0, max_iters=0,  # time constraint
          callback=None,
          load_path=None,
          **network_kwargs
          ):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via tensorflow_code-pytorch.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()

    cpus_per_worker = 1
    U.get_session(config=tf.ConfigProto(
        allow_soft_placement=True,
        inter_op_parallelism_threads=cpus_per_worker,
        intra_op_parallelism_threads=cpus_per_worker
    ))

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
                                                    for (oldv, newv) in
                                                    zipsame(get_variables("oldpi"), get_variables("pi"))])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)

            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                                                         include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()

    return pi
コード例 #3
0
def learn(
        network,
        env,
        data_path_reward="",
        data_path_steps="",
        data_path_states="",
        data_path_times="",
        model_path="",
        model_name="",
        restore=False,
        seed=None,
        nb_epochs=5,  # with default settings, perform 1M steps total
        nb_epoch_cycles=150,
        nb_rollout_steps=400,
        reward_scale=1.0,
        noise_type='normal_0.2',  #'adaptive-param_0.2',  ou_0.2, normal_0.2
        normalize_returns=False,
        normalize_observations=True,
        critic_l2_reg=1e-2,
        actor_lr=1e-4,
        critic_lr=1e-3,
        popart=False,
        gamma=0.99,
        clip_norm=None,
        nb_train_steps=50,  # per epoch cycle and MPI worker,
        batch_size=32,  # per MPI worker
        tau=0.01,
        param_noise_adaption_interval=50,
        **network_kwargs):

    nb_actions = env.action_space.shape[0]

    memory = Memory(limit=int(1e5),
                    action_shape=env.action_space.shape[0],
                    observation_shape=env.observation_space.shape)

    critic = Critic(network=network, **network_kwargs)
    actor = Actor(nb_actions, network=network, **network_kwargs)
    """ set noise """
    action_noise = None
    param_noise = None

    if noise_type is not None:
        for current_noise_type in noise_type.split(','):
            current_noise_type = current_noise_type.strip()
            if current_noise_type == 'none':
                pass
            elif 'adaptive-param' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                param_noise = AdaptiveParamNoiseSpec(
                    initial_stddev=float(stddev),
                    desired_action_stddev=float(stddev))
            elif 'normal' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = NormalActionNoise(mu=np.zeros(nb_actions),
                                                 sigma=float(stddev) *
                                                 np.ones(nb_actions))
            elif 'ou' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = OrnsteinUhlenbeckActionNoise(
                    mu=np.zeros(nb_actions),
                    sigma=float(stddev) * np.ones(nb_actions))
            else:
                raise RuntimeError(
                    'unknown noise type "{}"'.format(current_noise_type))
    """action scale"""
    max_action = env.action_high_bound
    logger.info(
        'scaling actions by {} before executing in env'.format(max_action))
    """ agent ddpg """
    agent = DDPG(actor,
                 critic,
                 memory,
                 env.observation_space.shape,
                 env.action_space.shape[0],
                 gamma=gamma,
                 tau=tau,
                 normalize_returns=normalize_returns,
                 normalize_observations=normalize_observations,
                 batch_size=batch_size,
                 action_noise=action_noise,
                 param_noise=param_noise,
                 critic_l2_reg=critic_l2_reg,
                 actor_lr=actor_lr,
                 critic_lr=critic_lr,
                 enable_popart=popart,
                 clip_norm=clip_norm,
                 reward_scale=reward_scale)

    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    sess = U.get_session()

    if restore:
        agent.restore(sess, model_path, model_name)
    else:
        agent.initialize(sess)
        sess.graph.finalize()

    agent.reset()

    episodes = 0
    epochs_rewards = np.zeros((nb_epochs, nb_epoch_cycles), dtype=np.float32)
    epochs_times = np.zeros((nb_epochs, nb_epoch_cycles), dtype=np.float32)
    epochs_steps = np.zeros((nb_epochs, nb_epoch_cycles), dtype=np.float32)
    epochs_states = []
    for epoch in range(nb_epochs):

        logger.info(
            "======================== The {} epoch start !!! ========================="
            .format(epoch))
        epoch_episode_rewards = []
        epoch_episode_steps = []
        epoch_episode_times = []
        epoch_actions = []
        epoch_episode_states = []
        epoch_qs = []
        epoch_episodes = 0

        for cycle in range(nb_epoch_cycles):
            start_time = time.time()
            obs, state, done = env.reset()
            episode_reward = 0.
            episode_step = 0
            episode_states = []
            logger.info(
                "================== The {} episode start !!! ==================="
                .format(cycle))

            for t_rollout in range(nb_rollout_steps):
                # logger.info("================== The {} steps finish  !!! ===================".format(t_rollout))
                """ choose next action """
                action, q, _, _ = agent.step(obs,
                                             stddev,
                                             apply_noise=True,
                                             compute_Q=True)

                new_obs, next_state, r, done, safe_or_not = env.step(
                    max_action * action)
                """ normalize state """
                print("\nReward", r)

                if safe_or_not is False:
                    break

                episode_reward += r
                episode_step += 1

                episode_states.append([
                    cp.deepcopy(state),
                    cp.deepcopy(action),
                    np.array(cp.deepcopy(r)),
                    cp.deepcopy(next_state)
                ])

                epoch_actions.append(action)
                epoch_qs.append(q)

                agent.store_transition(obs, action, r, new_obs, done)
                obs = new_obs
                state = next_state

                if done:
                    break
            """ noise decay """
            stddev = float(stddev) * 0.95
            """ store data """
            duration = time.time() - start_time
            epoch_episode_rewards.append(episode_reward)
            epoch_episode_steps.append(episode_step)
            epoch_episode_times.append(cp.deepcopy(duration))
            epoch_episode_states.append(cp.deepcopy(episode_states))

            epochs_rewards[epoch, cycle] = episode_reward
            epochs_steps[epoch, cycle] = episode_step
            epochs_times[epoch, cycle] = cp.deepcopy(duration)

            logger.info(
                "============================= The Episode_Reward:: {}!!! ============================"
                .format(epoch_episode_rewards))
            logger.info(
                "============================= The Episode_Times:: {}!!! ============================"
                .format(epoch_episode_times))

            epoch_episodes += 1
            episodes += 1
            """ Training process """
            epoch_actor_losses = []
            epoch_critic_losses = []
            epoch_adaptive_distances = []
            for t_train in range(nb_train_steps):
                logger.info("")

                # Adapt param noise, if necessary.

                if memory.nb_entries >= batch_size and t_train % param_noise_adaption_interval == 0:
                    distance = agent.adapt_param_noise()
                    epoch_adaptive_distances.append(distance)
                cl, al = agent.train()
                epoch_critic_losses.append(cl)
                epoch_actor_losses.append(al)
                agent.update_target_net()

        epochs_states.append(cp.deepcopy(epoch_episode_states))

        # # save data
        np.save(data_path_reward, epochs_rewards)
        np.save(data_path_steps, epochs_steps)
        np.save(data_path_states, epochs_states)
        np.save(data_path_times, epochs_times)

        # np.save(data_path + 'train_reward_' + "DDPG" + '_' + file_name + "_" + noise_type, epochs_rewards)
        # np.save(data_path + 'train_step_' + "DDPG" + '_' + file_name + "_" + noise_type, epochs_steps)
        # np.save(data_path + 'train_states_' + "DDPG" + '_' + file_name + "_" + noise_type, epochs_states)
        # np.save(data_path + 'train_times_' + "DDPG" + '_' + file_name + "_" + noise_type, epochs_times)

    # # agent save
    agent.store(model_path + model_name)