コード例 #1
0
 def calculate_standard_deviation(self, graph, population):
     import math
     fitness_list = self.evaluate_fitness(graph, population)
     avg_score = np.mean(
         [goalFunction(graph.applyMask(i)) for i in population])
     variance = np.mean([math.pow(i - avg_score, 2) for i in fitness_list])
     deviation = math.sqrt(variance)
     return deviation, avg_score
コード例 #2
0
    def run(self, graph, population, params, num_parents, debug):
        start = time.time()
        population = [
            self.generateRandomMask(graph) for i in range(params['population'])
        ]
        t_condition, avg_score, deviation = self.ga.termination_method(
            graph, population)
        while (t_condition):
            # Measuring the fitness of each chromosome in the population. And Updating the population
            fitness_list, population = self.ga.succesion_method(
                population, graph)

            # Selecting best mates(Parents) and add them to population
            parents = self.ga.selection(population, fitness_list, num_parents)

            # Generate crossover
            if (params['cross_prob'] > random.random()):
                children = self.ga.cross_method(population, parents)
                if (params['mutation_prob'] > random.random()):
                    # Generate Mutations
                    children_mutations = self.ga.mutation(population, children)

            # Update Population and mesuare new fitness
            fitness_list = self.ga.evaluate_fitness(graph, population)

            # Update t_condition
            t_condition, avg_score, deviation = self.ga.termination_method(
                graph, population)

            #Update score
            graph_indx = np.argmin(fitness_list)
            mask = population[graph_indx]
            score = goalFunction(graph.applyMask(mask))
            if (score < self.score):
                self.history.append(score)
                self.bestGraph = copy.deepcopy(graph.applyMask(mask))
                self.score = goalFunction(self.bestGraph)

            # Debug
            if (debug):
                self.debug.show_iterations(avg_score, deviation)
                #self.debug.show_parent_children(parents, children, children_mutations, graph)
        end = time.time()
        self.time = end - start
コード例 #3
0
    def roulete(self, fitness_list, population, graph):
        summation = np.sum(
            [goalFunction(graph.applyMask(i)) for i in population])
        u = random.random()
        if (u < 0.3):
            u = 0.3
        cur_population = len(population)
        new_population = int(cur_population * u)
        #print("cur: {} new: {} u: {}".format(cur_population, new_population, u))
        while (len(population) > new_population
               and len(fitness_list) > new_population and new_population > 4):
            del population[np.argmax(fitness_list)]
            del fitness_list[np.argmax(fitness_list)]
        return fitness_list, population


#endregion
コード例 #4
0
 def evaluate_fitness(self, graph, population):
     return [goalFunction(graph.applyMask(i)) for i in population]
コード例 #5
0
 def show_parent_children(self, generations, parents, children,
                          children_mutations, graph):
     child = goalFunction(graph.applyMask(children[0]))
     print("Generation: {} Parent1: {} parent2: {} Children: {}".format(
         generations, parents[0][0], parents[1][0], child))