コード例 #1
0
ファイル: views.py プロジェクト: jinhan/LectureScapeBlock
def video_single_query(vid):
    """
    Return heatmap information from the database for a single video.
    Example: http://localhost:9999/query/video_single?vid=2deIoNhqDsg
    """

    import numpy as np
    mongodb = get_db()
    start_time = time.time()

    collection = mongodb['visual_transition']
    vtran_temp_data = list(collection.find({"vid": vid}))
    # print vtran_temp_data
    vtran_data = vtran_temp_data[0]["visual_diff"]
    # vtran_np_data = np.array(vtran_data)
    # print vtran_data
    # print vtran_data[:,1]
    vtran_peaks_raw = detect_peaks(np.array(vtran_data)[:,1], 3, "vtran")
    # print vtran_peaks
    vtran_peaks = json.dumps(vtran_peaks_raw, default=json_util.default)

    collection = mongodb[HEATMAPS_COL]
    # entries = list(collection.find({"video_id": vid}, {"completion_counts": 0}))
    entries = list(collection.find({"video_id": vid}, {"daily_view_counts": 0, "raw_counts": 0, "playrate_counts": 0, "pause_counts": 0, "unique_counts": 0, "replay_counts": 0, "skip_counts": 0, "completion_counts": 0}))

    # print vid, entries
    # L@S 2014 analysis
    # collection = mongodb["video_heatmaps_mitx_fall2012"]
    # entries = list(collection.find({"video_id": vid}, {"completion_counts": 0}))
    # if len(entries) == 0:
    #     collection = mongodb["video_heatmaps_harvardx_ph207x_fall2012"]
    #     entries = list(collection.find({"video_id": vid}, {"completion_counts": 0}))
    # if len(entries) == 0:
    #     collection = mongodb["video_heatmaps_berkeleyx_cs188x_fall2012"]
    #     entries = list(collection.find({"video_id": vid}, {"completion_counts": 0}))

    if len(entries):
        # First, smooth the points and run peak detection
        play_points = entries[0]["play_counts"]
        play_points[0] = 0
        #play_points[0:int(len(play_points)*0.03)] = [0]*int(len(play_points)*0.03)
        play_kde = get_kde(np.array(play_points), 0.02)
        # mask nan values
        #print "contains nan:", np.all(np.isnan(play_kde[:,1]), 0)
        #if np.all(np.isnan(play_kde[:,1]), 0):
        #    play_kde = [[index, point] for index, point in enumerate(play_points)]
        for index, point in enumerate(play_kde[:,1]):
            if np.isnan(point):
              play_kde[:,1][index] = play_points[index]
        masked_play_kde = np.ma.array(play_kde, mask=np.isnan(play_kde))
        #print masked_play_kde, "max", np.max(masked_play_kde[:,1])
        play_kde = masked_play_kde
        play_peaks_raw = detect_peaks(play_kde[:,1], 2.2, "interaction")
        entries[0]["play_kde"] = play_kde[:,1].tolist()
        interaction_peaks = json.dumps(play_peaks_raw, default=json_util.default)
        result = json.dumps(entries[0], default=json_util.default)
    else:
        result = ""
    print sys._getframe().f_code.co_name, "COMPLETED", (time.time() - start_time), "seconds"
    return [result, interaction_peaks, vtran_data, vtran_peaks]
コード例 #2
0
ファイル: views.py プロジェクト: jinhan/LectureScapeBlock
def video_multiple_query(course=""):
    """
    Return heatmap information from the database for a single video.
    Example: http://localhost:9999/query/video_single?vid=2deIoNhqDsg
    """

    import numpy as np
    mongodb = get_db()
    start_time = time.time()

    all_result = []
    all_interaction_peaks = []

    collection = mongodb[VIDEOS_COL]

    #UIST 2014
    if course == "6.00x":
        course_name = "6.00x-Fall-2012"
    elif course == "3.091x":
        course_name = "3.091x-Fall-2012"
    else:
        course_name = "6.00x-Fall-2012"
    entries = list(collection.find({"course_name":course_name})
        .sort([("week_number", ASCENDING), ("sequence_number", ASCENDING), ("module_index", ASCENDING)]))

    for entry in entries:
        # vtran data might not be necessary for the multiplayer view
        # collection = mongodb['visual_transition']
        # vtran_temp_data = list(collection.find({"vid": vid}))
        # vtran_data = vtran_temp_data[0]["visual_diff"]
        # vtran_peaks_raw = detect_peaks(np.array(vtran_data)[:,1], 3, "vtran")
        # vtran_peaks = json.dumps(vtran_peaks_raw, default=json_util.default)

        collection = mongodb[HEATMAPS_COL]
        vid = entry["video_id"]
        # entries = list(collection.find({"video_id": vid}, {"completion_counts": 0}))
        single_entries = list(collection.find({"video_id": vid}, {"total_watching_time": 0, "daily_view_counts": 0, "raw_counts": 0, "playrate_counts": 0, "pause_counts": 0, "unique_counts": 0, "replay_counts": 0, "skip_counts": 0, "completion_counts": 0}))

        if len(single_entries):
            # First, smooth the points and run peak detection
            play_points = single_entries[0]["play_counts"]
            play_points[0] = 0
            #play_points[0:int(len(play_points)*0.03)] = [0]*int(len(play_points)*0.03)
            play_kde = get_kde(np.array(play_points), 0.02)
            # mask nan values
            #print "contains nan:", np.all(np.isnan(play_kde[:,1]), 0)
            #if np.all(np.isnan(play_kde[:,1]), 0):
            #    play_kde = [[index, point] for index, point in enumerate(play_points)]
            for index, point in enumerate(play_kde[:,1]):
                if np.isnan(point):
                  play_kde[:,1][index] = play_points[index]
            masked_play_kde = np.ma.array(play_kde, mask=np.isnan(play_kde))
            #print masked_play_kde, "max", np.max(masked_play_kde[:,1])
            play_kde = masked_play_kde
            play_peaks_raw = detect_peaks(play_kde[:,1], 3, "interaction")
            single_entries[0]["play_kde"] = play_kde[:,1].tolist()
            interaction_peaks = json.dumps(play_peaks_raw, default=json_util.default)
            result = json.dumps(single_entries[0], default=json_util.default)
            all_result.append(result)
            all_interaction_peaks.append(interaction_peaks)
        else:
            result = ""
    print sys._getframe().f_code.co_name, "COMPLETED", (time.time() - start_time), "seconds"
    # return [result, interaction_peaks, vtran_data, vtran_peaks]
    return [all_result, all_interaction_peaks]