def get_orgres_match_distances(allres, orgtype_='false'): import algos qcxs = allres[orgtype_].qcxs cxs = allres[orgtype_].cxs match_list = zip(qcxs, cxs) print('[rr2] getting orgtype_=%r distances between sifts' % orgtype_) adesc1, adesc2 = get_matching_descriptors(allres, match_list) print('[rr2] * adesc1.shape = %r' % (adesc1.shape,)) print('[rr2] * adesc2.shape = %r' % (adesc2.shape,)) #dist_list = ['L1', 'L2', 'hist_isect', 'emd'] #dist_list = ['L1', 'L2'] dist_list = ['L1', 'L2', 'hist_isect'] distances = algos.compute_distances(adesc1, adesc2, dist_list) return distances
def get_orgres_match_distances(allres, orgtype_='false'): import algos qcxs = allres[orgtype_].qcxs cxs = allres[orgtype_].cxs match_list = zip(qcxs, cxs) print('[rr2] getting orgtype_=%r distances between sifts' % orgtype_) adesc1, adesc2 = get_matching_descriptors(allres, match_list) print('[rr2] * adesc1.shape = %r' % (adesc1.shape, )) print('[rr2] * adesc2.shape = %r' % (adesc2.shape, )) #dist_list = ['L1', 'L2', 'hist_isect', 'emd'] #dist_list = ['L1', 'L2'] dist_list = ['L1', 'L2', 'hist_isect'] distances = algos.compute_distances(adesc1, adesc2, dist_list) return distances
def get_orgres_match_distances(allres, orgtype_='false'): import algos qrids = allres[orgtype_].qrids rids = allres[orgtype_].rids match_list = zip(qrids, rids) printDBG('[rr2] getting orgtype_=%r distances between sifts' % orgtype_) adesc1, adesc2 = get_matching_descriptors(allres, match_list) printDBG('[rr2] * adesc1.shape = %r' % (adesc1.shape, )) printDBG('[rr2] * adesc2.shape = %r' % (adesc2.shape, )) #dist_list = ['L1', 'L2', 'hist_isect', 'emd'] #dist_list = ['L1', 'L2', 'hist_isect'] dist_list = ['L2', 'hist_isect'] hist1 = np.array(adesc1, dtype=np.float64) hist2 = np.array(adesc2, dtype=np.float64) distances = algos.compute_distances(hist1, hist2, dist_list) return distances
def get_orgres_match_distances(allres, orgtype_='false'): import algos qrids = allres[orgtype_].qrids rids = allres[orgtype_].rids match_list = zip(qrids, rids) printDBG('[rr2] getting orgtype_=%r distances between sifts' % orgtype_) adesc1, adesc2 = get_matching_descriptors(allres, match_list) printDBG('[rr2] * adesc1.shape = %r' % (adesc1.shape,)) printDBG('[rr2] * adesc2.shape = %r' % (adesc2.shape,)) #dist_list = ['L1', 'L2', 'hist_isect', 'emd'] #dist_list = ['L1', 'L2', 'hist_isect'] dist_list = ['L2', 'hist_isect'] hist1 = np.array(adesc1, dtype=np.float64) hist2 = np.array(adesc2, dtype=np.float64) distances = algos.compute_distances(hist1, hist2, dist_list) return distances