def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.use_action_masks = config.get('use_action_masks', False) self.obs_ph = tf.placeholder(self.obs_space.dtype, (None, ) + self.obs_space.shape, name='obs') self.actions_num = self.action_space.n if self.use_action_masks: print('using masks for action') self.action_mask_ph = tf.placeholder('int32', (None, self.actions_num), name='actions_mask') else: self.action_mask_ph = None self.mask = [False] * self.num_agents self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape=self.obs_space.shape, epsilon=1e-5, decay=0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name': 'agent', 'inputs': self.input_obs, 'batch_num': self.num_agents, 'games_num': self.num_agents, 'actions_num': self.actions_num, 'prev_actions_ph': None, 'action_mask_ph': self.action_mask_ph } self.last_state = None if self.network.is_rnn(): self.neglop, self.value, self.action, _, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state, self.logits = self.network( self.run_dict, reuse=False) self.last_state = self.initial_state * self.num_agents else: self.neglop, self.value, self.action, _, self.logits = self.network( self.run_dict, reuse=False) self.variables = TensorFlowVariables( [self.neglop, self.value, self.action], self.sess) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer())
class PpoPlayerContinuous(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.obs_ph = tf.placeholder('float32', (None, ) + self.obs_space.shape, name = 'obs') self.actions_num = self.action_space.shape[0] self.actions_low = self.action_space.low self.actions_high = self.action_space.high self.mask = [False] self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = self.obs_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : 1, 'games_num' : 1, 'actions_num' : self.actions_num, 'prev_actions_ph' : None } self.last_state = None if self.network.is_rnn(): self.neglop, self.value, self.action, _, self.mu, _, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.run_dict, reuse=False) self.last_state = self.initial_state else: self.neglop, self.value, self.action, _, self.mu, _ = self.network(self.run_dict, reuse=False) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def get_action(self, obs, is_determenistic = False): if is_determenistic: ret_action = self.mu else: ret_action = self.action if self.network.is_rnn(): action, self.last_state = self.sess.run([ret_action, self.lstm_state], {self.obs_ph : obs, self.states_ph : self.last_state, self.masks_ph : self.mask}) else: action = self.sess.run([ret_action], {self.obs_ph : obs}) action = np.squeeze(action) return rescale_actions(self.actions_low, self.actions_high, np.clip(action, -1.0, 1.0)) def restore(self, fn): self.saver.restore(self.sess, fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state
def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.obs_ph = tf.placeholder('float32', (None, ) + self.obs_space.shape, name='obs') self.actions_num = self.action_space.shape[0] self.actions_low = self.action_space.low self.actions_high = self.action_space.high self.mask = [False] self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape=self.obs_space.shape, epsilon=1e-5, decay=0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name': 'agent', 'inputs': self.input_obs, 'batch_num': 1, 'games_num': 1, 'actions_num': self.actions_num, 'prev_actions_ph': None } self.last_state = None if self.network.is_rnn(): self.neglop, self.value, self.action, _, self.mu, _, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network( self.run_dict, reuse=False) self.last_state = self.initial_state else: self.neglop, self.value, self.action, _, self.mu, _ = self.network( self.run_dict, reuse=False) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer())
def __init__(self, sess, base_name, observation_space, action_space, config): self.name = base_name self.actions_low = action_space.low self.actions_high = action_space.high self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.steps_num = config['steps_num'] self.normalize_advantage = config['normalize_advantage'] self.config = config self.state_shape = observation_space.shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("%d, %H:%M:%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.normalize_input = self.config['normalize_input'] self.seq_len = self.config['seq_len'] self.dones = np.asarray([False] * self.num_actors, dtype=np.bool) self.current_rewards = np.asarray([0] * self.num_actors, dtype=np.float32) self.current_lengths = np.asarray([0] * self.num_actors, dtype=np.float32) self.game_rewards = deque([], maxlen=100) self.game_lengths = deque([], maxlen=100) self.obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name='obs') self.target_obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name='target_obs') self.actions_num = action_space.shape[0] self.actions_ph = tf.placeholder('float32', (None, ) + action_space.shape, name='actions') self.old_mu_ph = tf.placeholder('float32', (None, ) + action_space.shape, name='old_mu_ph') self.old_sigma_ph = tf.placeholder('float32', (None, ) + action_space.shape, name='old_sigma_ph') self.old_neglogp_actions_ph = tf.placeholder('float32', (None, ), name='old_logpactions') self.rewards_ph = tf.placeholder('float32', (None, ), name='rewards') self.old_values_ph = tf.placeholder('float32', (None, ), name='old_values') self.advantages_ph = tf.placeholder('float32', (None, ), name='advantages') self.learning_rate_ph = tf.placeholder('float32', (), name='lr_ph') self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.bounds_loss_coef = config.get('bounds_loss_coef', None) if self.is_adaptive_lr: self.lr_threshold = config['lr_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay( 1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], end_learning_rate=0.001, power=tr_helpers.get_or_default(config, 'decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay( 1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], decay_rate=config['decay_rate']) self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape=observation_space.shape, epsilon=1e-5, decay=0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize( self.input_target_obs, train=False) games_num = self.config[ 'minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name': 'agent', 'inputs': self.input_obs, 'batch_num': self.config['minibatch_size'], 'games_num': games_num, 'actions_num': self.actions_num, 'prev_actions_ph': self.actions_ph, } self.run_dict = { 'name': 'agent', 'inputs': self.input_target_obs, 'batch_num': self.num_actors, 'games_num': self.num_actors, 'actions_num': self.actions_num, 'prev_actions_ph': None, } self.states = None if self.network.is_rnn(): self.neglogp_actions, self.state_values, self.action, self.entropy, self.mu, self.sigma, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network( self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state = self.network( self.run_dict, reuse=True) self.states = self.target_initial_state else: self.neglogp_actions, self.state_values, self.action, self.entropy, self.mu, self.sigma = self.network( self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma = self.network( self.run_dict, reuse=True) curr_e_clip = self.e_clip * self.lr_multiplier if (self.ppo): self.prob_ratio = tf.exp(self.old_neglogp_actions_ph - self.neglogp_actions) self.prob_ratio = tf.clip_by_value(self.prob_ratio, 0.0, 16.0) self.pg_loss_unclipped = -tf.multiply(self.advantages_ph, self.prob_ratio) self.pg_loss_clipped = -tf.multiply( self.advantages_ph, tf.clip_by_value(self.prob_ratio, 1. - curr_e_clip, 1. + curr_e_clip)) self.actor_loss = tf.reduce_mean( tf.maximum(self.pg_loss_unclipped, self.pg_loss_clipped)) else: self.actor_loss = tf.reduce_mean(self.neglogp_actions * self.advantages_ph) self.c_loss = (tf.squeeze(self.state_values) - self.rewards_ph)**2 if self.clip_value: self.cliped_values = self.old_values_ph + tf.clip_by_value( tf.squeeze(self.state_values) - self.old_values_ph, -curr_e_clip, curr_e_clip) self.c_loss_clipped = tf.square(self.cliped_values - self.rewards_ph) self.critic_loss = tf.reduce_mean( tf.maximum(self.c_loss, self.c_loss_clipped)) else: self.critic_loss = tf.reduce_mean(self.c_loss) self._calc_kl_dist() self.loss = self.actor_loss + 0.5 * self.critic_coef * self.critic_loss - self.config[ 'entropy_coef'] * self.entropy self._apply_bound_loss() self.reg_loss = tf.losses.get_regularization_loss() self.loss += self.reg_loss self.train_step = tf.train.AdamOptimizer(self.current_lr * self.lr_multiplier) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') grads = tf.gradients(self.loss, self.weights) if self.config['truncate_grads']: grads, _ = tf.clip_by_global_norm(grads, self.grad_norm) grads = list(zip(grads, self.weights)) self.train_op = self.train_step.apply_gradients(grads) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer())
class A2CAgent: def __init__(self, sess, base_name, observation_space, action_space, config): self.name = base_name self.actions_low = action_space.low self.actions_high = action_space.high self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.steps_num = config['steps_num'] self.normalize_advantage = config['normalize_advantage'] self.config = config self.state_shape = observation_space.shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("%d, %H:%M:%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.normalize_input = self.config['normalize_input'] self.seq_len = self.config['seq_len'] self.dones = np.asarray([False] * self.num_actors, dtype=np.bool) self.current_rewards = np.asarray([0] * self.num_actors, dtype=np.float32) self.current_lengths = np.asarray([0] * self.num_actors, dtype=np.float32) self.game_rewards = deque([], maxlen=100) self.game_lengths = deque([], maxlen=100) self.obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name='obs') self.target_obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name='target_obs') self.actions_num = action_space.shape[0] self.actions_ph = tf.placeholder('float32', (None, ) + action_space.shape, name='actions') self.old_mu_ph = tf.placeholder('float32', (None, ) + action_space.shape, name='old_mu_ph') self.old_sigma_ph = tf.placeholder('float32', (None, ) + action_space.shape, name='old_sigma_ph') self.old_neglogp_actions_ph = tf.placeholder('float32', (None, ), name='old_logpactions') self.rewards_ph = tf.placeholder('float32', (None, ), name='rewards') self.old_values_ph = tf.placeholder('float32', (None, ), name='old_values') self.advantages_ph = tf.placeholder('float32', (None, ), name='advantages') self.learning_rate_ph = tf.placeholder('float32', (), name='lr_ph') self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.bounds_loss_coef = config.get('bounds_loss_coef', None) if self.is_adaptive_lr: self.lr_threshold = config['lr_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay( 1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], end_learning_rate=0.001, power=tr_helpers.get_or_default(config, 'decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay( 1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], decay_rate=config['decay_rate']) self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape=observation_space.shape, epsilon=1e-5, decay=0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize( self.input_target_obs, train=False) games_num = self.config[ 'minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name': 'agent', 'inputs': self.input_obs, 'batch_num': self.config['minibatch_size'], 'games_num': games_num, 'actions_num': self.actions_num, 'prev_actions_ph': self.actions_ph, } self.run_dict = { 'name': 'agent', 'inputs': self.input_target_obs, 'batch_num': self.num_actors, 'games_num': self.num_actors, 'actions_num': self.actions_num, 'prev_actions_ph': None, } self.states = None if self.network.is_rnn(): self.neglogp_actions, self.state_values, self.action, self.entropy, self.mu, self.sigma, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network( self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state = self.network( self.run_dict, reuse=True) self.states = self.target_initial_state else: self.neglogp_actions, self.state_values, self.action, self.entropy, self.mu, self.sigma = self.network( self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma = self.network( self.run_dict, reuse=True) curr_e_clip = self.e_clip * self.lr_multiplier if (self.ppo): self.prob_ratio = tf.exp(self.old_neglogp_actions_ph - self.neglogp_actions) self.prob_ratio = tf.clip_by_value(self.prob_ratio, 0.0, 16.0) self.pg_loss_unclipped = -tf.multiply(self.advantages_ph, self.prob_ratio) self.pg_loss_clipped = -tf.multiply( self.advantages_ph, tf.clip_by_value(self.prob_ratio, 1. - curr_e_clip, 1. + curr_e_clip)) self.actor_loss = tf.reduce_mean( tf.maximum(self.pg_loss_unclipped, self.pg_loss_clipped)) else: self.actor_loss = tf.reduce_mean(self.neglogp_actions * self.advantages_ph) self.c_loss = (tf.squeeze(self.state_values) - self.rewards_ph)**2 if self.clip_value: self.cliped_values = self.old_values_ph + tf.clip_by_value( tf.squeeze(self.state_values) - self.old_values_ph, -curr_e_clip, curr_e_clip) self.c_loss_clipped = tf.square(self.cliped_values - self.rewards_ph) self.critic_loss = tf.reduce_mean( tf.maximum(self.c_loss, self.c_loss_clipped)) else: self.critic_loss = tf.reduce_mean(self.c_loss) self._calc_kl_dist() self.loss = self.actor_loss + 0.5 * self.critic_coef * self.critic_loss - self.config[ 'entropy_coef'] * self.entropy self._apply_bound_loss() self.reg_loss = tf.losses.get_regularization_loss() self.loss += self.reg_loss self.train_step = tf.train.AdamOptimizer(self.current_lr * self.lr_multiplier) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') grads = tf.gradients(self.loss, self.weights) if self.config['truncate_grads']: grads, _ = tf.clip_by_global_norm(grads, self.grad_norm) grads = list(zip(grads, self.weights)) self.train_op = self.train_step.apply_gradients(grads) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def _calc_kl_dist(self): self.kl_dist = policy_kl_tf(self.mu, self.sigma, self.old_mu_ph, self.old_sigma_ph) if self.is_adaptive_lr: self.current_lr = tf.where( self.kl_dist > (2.0 * self.lr_threshold), tf.maximum(self.current_lr / 1.5, 1e-6), self.current_lr) self.current_lr = tf.where( self.kl_dist < (0.5 * self.lr_threshold), tf.minimum(self.current_lr * 1.5, 1e-2), self.current_lr) def _apply_bound_loss(self): if self.bounds_loss_coef: soft_bound = 1.1 mu_loss_high = tf.square(tf.maximum(0.0, self.mu - soft_bound)) mu_loss_low = tf.square(tf.maximum(0.0, -soft_bound - self.mu)) self.bounds_loss = tf.reduce_sum(mu_loss_high + mu_loss_low, axis=1) self.loss += self.bounds_loss * self.bounds_loss_coef else: self.bounds_loss = None def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def get_action_values(self, obs): run_ops = [ self.target_action, self.target_state_values, self.target_neglogp, self.target_mu, self.target_sigma ] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run( run_ops, { self.target_obs_ph: obs, self.target_states_ph: self.states, self.target_masks_ph: self.dones }) else: return (*self.sess.run(run_ops, {self.target_obs_ph: obs}), None) def get_values(self, obs): if self.network.is_rnn(): return self.sess.run( [self.target_state_values], { self.target_obs_ph: obs, self.target_states_ph: self.states, self.target_masks_ph: self.dones }) else: return self.sess.run([self.target_state_values], {self.target_obs_ph: obs}) def play_steps(self): # Here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs, mb_mus, mb_sigmas = [],[],[],[],[],[],[],[] mb_states = [] epinfos = [] # For n in range number of steps for _ in range(self.steps_num): if self.network.is_rnn(): mb_states.append(self.states) actions, values, neglogpacs, mu, sigma, self.states = self.get_action_values( self.obs) #actions = np.squeeze(actions) values = np.squeeze(values) neglogpacs = np.squeeze(neglogpacs) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones.copy()) mb_mus.append(mu) mb_sigmas.append(sigma) self.obs[:], rewards, self.dones, infos = self.vec_env.step( rescale_actions(self.actions_low, self.actions_high, np.clip(actions, -1.0, 1.0))) self.current_rewards += rewards self.current_lengths += 1 for reward, length, done in zip(self.current_rewards, self.current_lengths, self.dones): if done: self.game_rewards.append(reward) self.game_lengths.append(length) shaped_rewards = self.rewards_shaper(rewards) epinfos.append(infos) mb_rewards.append(shaped_rewards) self.current_rewards = self.current_rewards * (1.0 - self.dones) self.current_lengths = self.current_lengths * (1.0 - self.dones) #using openai baseline approach mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions, dtype=np.float32) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_mus = np.asarray(mb_mus, dtype=np.float32) mb_sigmas = np.asarray(mb_sigmas, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) mb_states = np.asarray(mb_states, dtype=np.float32) last_values = self.get_values(self.obs) last_values = np.squeeze(last_values) mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.steps_num)): if t == self.steps_num - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t + 1] nextvalues = mb_values[t + 1] delta = mb_rewards[ t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[ t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values if self.network.is_rnn(): result = (*map( swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas, mb_states)), epinfos) else: result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas)), None, epinfos) return result def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def train(self): max_epochs = tr_helpers.get_or_default(self.config, 'max_epochs', 1e6) self.obs = self.vec_env.reset() batch_size = self.steps_num * self.num_actors * self.num_agents minibatch_size = self.config['minibatch_size'] mini_epochs_num = self.config['mini_epochs'] num_minibatches = batch_size // minibatch_size last_lr = self.config['learning_rate'] last_mean_rewards = -100500 epoch_num = 0 frame = 0 update_time = 0 play_time = 0 start_time = time.time() total_time = 0 while True: play_time_start = time.time() epoch_num = self.update_epoch() frame += batch_size obses, returns, dones, actions, values, neglogpacs, mus, sigmas, lstm_states, _ = self.play_steps( ) advantages = returns - values if self.normalize_advantage: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) a_losses = [] c_losses = [] b_losses = [] entropies = [] kls = [] play_time_end = time.time() play_time = play_time_end - play_time_start update_time_start = time.time() if self.network.is_rnn(): total_games = batch_size // self.seq_len num_games_batch = minibatch_size // self.seq_len game_indexes = np.arange(total_games) flat_indexes = np.arange(total_games * self.seq_len).reshape( total_games, self.seq_len) lstm_states = lstm_states[::self.seq_len] for _ in range(0, mini_epochs_num): np.random.shuffle(game_indexes) for i in range(0, num_minibatches): batch = range(i * num_games_batch, (i + 1) * num_games_batch) mb_indexes = game_indexes[batch] mbatch = flat_indexes[mb_indexes].ravel() dict = {} dict[self.old_values_ph] = values[mbatch] dict[self.old_neglogp_actions_ph] = neglogpacs[mbatch] dict[self.advantages_ph] = advantages[mbatch] dict[self.rewards_ph] = returns[mbatch] dict[self.actions_ph] = actions[mbatch] dict[self.obs_ph] = obses[mbatch] dict[self.old_mu_ph] = mus[mbatch] dict[self.old_sigma_ph] = sigmas[mbatch] dict[self.masks_ph] = dones[mbatch] dict[self.states_ph] = lstm_states[batch] dict[self.learning_rate_ph] = last_lr run_ops = [ self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier ] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append( tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[mbatch] = cmu sigmas[mbatch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) else: for _ in range(0, mini_epochs_num): permutation = np.random.permutation(batch_size) obses = obses[permutation] returns = returns[permutation] actions = actions[permutation] values = values[permutation] neglogpacs = neglogpacs[permutation] advantages = advantages[permutation] mus = mus[permutation] sigmas = sigmas[permutation] for i in range(0, num_minibatches): batch = range(i * minibatch_size, (i + 1) * minibatch_size) dict = { self.obs_ph: obses[batch], self.actions_ph: actions[batch], self.rewards_ph: returns[batch], self.advantages_ph: advantages[batch], self.old_neglogp_actions_ph: neglogpacs[batch], self.old_values_ph: values[batch] } dict[self.old_mu_ph] = mus[batch] dict[self.old_sigma_ph] = sigmas[batch] dict[self.learning_rate_ph] = last_lr run_ops = [ self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier ] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append( tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[batch] = cmu sigmas[batch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) update_time_end = time.time() update_time = update_time_end - update_time_start sum_time = update_time + play_time total_time = update_time_end - start_time if True: print('Frames per seconds: ', batch_size / sum_time) self.writer.add_scalar('performance/fps', batch_size / sum_time, frame) self.writer.add_scalar('performance/upd_time', update_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('losses/a_loss', np.mean(a_losses), frame) self.writer.add_scalar('losses/c_loss', np.mean(c_losses), frame) if len(b_losses) > 0: self.writer.add_scalar('losses/bounds_loss', np.mean(b_losses), frame) self.writer.add_scalar('losses/entropy', np.mean(entropies), frame) self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', np.mean(kls), frame) self.writer.add_scalar('epochs', epoch_num, frame) if len(self.game_rewards) > 0: mean_rewards = np.mean(self.game_rewards) mean_lengths = np.mean(self.game_lengths) self.writer.add_scalar('rewards/mean', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/mean', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > last_mean_rewards: print('saving next best rewards: ', mean_rewards) last_mean_rewards = mean_rewards self.save("./nn/" + self.name + self.env_name) if last_mean_rewards > self.config['score_to_win']: self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return last_mean_rewards, epoch_num if epoch_num > max_epochs: print('MAX EPOCHS NUM!') self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return last_mean_rewards, epoch_num update_time = 0
def __init__(self, sess, base_name, observation_space, action_space, config): observation_shape = observation_space.shape self.use_action_masks = config.get('use_action_masks', False) self.is_train = config.get('is_train', True) self.self_play = config.get('self_play', False) self.name = base_name self.config = config self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = self.config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.steps_num = config['steps_num'] self.seq_len = self.config['seq_len'] self.normalize_advantage = config['normalize_advantage'] self.normalize_input = self.config['normalize_input'] self.state_shape = observation_shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("%d, %H:%M:%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.ignore_dead_batches = self.config.get('ignore_dead_batches', False) self.dones = np.asarray([False] * self.num_actors * self.num_agents, dtype=np.bool) self.current_rewards = np.asarray([0] * self.num_actors * self.num_agents, dtype=np.float32) self.current_lengths = np.asarray([0] * self.num_actors * self.num_agents, dtype=np.float32) self.games_to_log = self.config.get('games_to_track', 100) self.game_rewards = deque([], maxlen=self.games_to_log) self.game_lengths = deque([], maxlen=self.games_to_log) self.game_scores = deque([], maxlen=self.games_to_log) self.obs_ph = tf.placeholder(observation_space.dtype, (None, ) + observation_shape, name='obs') self.target_obs_ph = tf.placeholder(observation_space.dtype, (None, ) + observation_shape, name='target_obs') self.actions_num = action_space.n self.actions_ph = tf.placeholder('int32', (None, ), name='actions') if self.use_action_masks: self.action_mask_ph = tf.placeholder('int32', (None, self.actions_num), name='actions_mask') else: self.action_mask_ph = None self.old_logp_actions_ph = tf.placeholder('float32', (None, ), name='old_logpactions') self.rewards_ph = tf.placeholder('float32', (None, ), name='rewards') self.old_values_ph = tf.placeholder('float32', (None, ), name='old_values') self.advantages_ph = tf.placeholder('float32', (None, ), name='advantages') self.learning_rate_ph = tf.placeholder('float32', (), name='lr_ph') self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.is_adaptive_lr: self.lr_threshold = config['lr_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay( 1.0, self.epoch_num, config['max_epochs'], end_learning_rate=0.001, power=tr_helpers.get_or_default(config, 'decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay( 1.0, self.epoch_num, config['max_epochs'], decay_rate=config['decay_rate']) if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape=observation_space.shape, epsilon=1e-5, decay=0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize( self.input_target_obs, train=False) games_num = self.config[ 'minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name': 'agent', 'inputs': self.input_obs, 'batch_num': self.config['minibatch_size'], 'games_num': games_num, 'actions_num': self.actions_num, 'prev_actions_ph': self.actions_ph, 'action_mask_ph': None } self.run_dict = { 'name': 'agent', 'inputs': self.input_target_obs, 'batch_num': self.num_actors * self.num_agents, 'games_num': self.num_actors * self.num_agents, 'actions_num': self.actions_num, 'prev_actions_ph': None, 'action_mask_ph': self.action_mask_ph } self.states = None if self.network.is_rnn(): self.logp_actions, self.state_values, self.action, self.entropy, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network( self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state, self.logits = self.network( self.run_dict, reuse=True) self.states = self.target_initial_state else: self.logp_actions, self.state_values, self.action, self.entropy = self.network( self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.logits = self.network( self.run_dict, reuse=True) self.saver = tf.train.Saver() self.variables = TensorFlowVariables([ self.target_action, self.target_state_values, self.target_neglogp ], self.sess) if self.is_train: self.setup_losses() self.sess.run(tf.global_variables_initializer())
class PpoPlayerDiscrete(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.use_action_masks = config.get('use_action_masks', False) self.obs_ph = tf.placeholder(self.obs_space.dtype, (None, ) + self.obs_space.shape, name='obs') self.actions_num = self.action_space.n if self.use_action_masks: print('using masks for action') self.action_mask_ph = tf.placeholder('int32', (None, self.actions_num), name='actions_mask') else: self.action_mask_ph = None self.mask = [False] * self.num_agents self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape=self.obs_space.shape, epsilon=1e-5, decay=0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name': 'agent', 'inputs': self.input_obs, 'batch_num': self.num_agents, 'games_num': self.num_agents, 'actions_num': self.actions_num, 'prev_actions_ph': None, 'action_mask_ph': self.action_mask_ph } self.last_state = None if self.network.is_rnn(): self.neglop, self.value, self.action, _, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state, self.logits = self.network( self.run_dict, reuse=False) self.last_state = self.initial_state * self.num_agents else: self.neglop, self.value, self.action, _, self.logits = self.network( self.run_dict, reuse=False) self.variables = TensorFlowVariables( [self.neglop, self.value, self.action], self.sess) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def get_action(self, obs, is_determenistic=True): ret_action = self.action if self.network.is_rnn(): action, self.last_state, logits = self.sess.run( [ret_action, self.lstm_state, self.logits], { self.obs_ph: obs, self.states_ph: self.last_state, self.masks_ph: self.mask }) else: action, logits = self.sess.run([ret_action, self.logits], {self.obs_ph: obs}) if is_determenistic: return np.argmax(logits, axis=-1).astype(np.int32) else: return int(np.squeeze(action)) def get_masked_action(self, obs, mask, is_determenistic=False): #if is_determenistic: ret_action = self.action if self.network.is_rnn(): action, self.last_state, logits = self.sess.run( [ret_action, self.lstm_state, self.logits], { self.action_mask_ph: mask, self.obs_ph: obs, self.states_ph: self.last_state, self.masks_ph: self.mask }) else: action, logits = self.sess.run([ret_action, self.logits], { self.action_mask_ph: mask, self.obs_ph: obs }) if is_determenistic: logits = np.array(logits) return np.argmax(logits, axis=-1).astype(np.int32) else: return np.squeeze(action).astype(np.int32) def restore(self, fn): self.saver.restore(self.sess, fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state