class AlphaFormula3(Strategy): def __init__(self, stg_id=None, stg_configs=None): super(AlphaFormula3, self).__init__(stg_id=stg_id, stg_configs=stg_configs) self.day_count = 0 self.order = None def _start(self, app_context, **kwargs): self.length = self.get_stg_config_value("length", 10) self.bars = [ self.app_context.inst_data_mgr.get_series("Bar.%s.Time.300" % i) for i in self.app_context.app_config.instrument_ids ] for bar in self.bars: bar.start(app_context) self.opens = MakeVector(self.bars, input_key='Open') self.volumes = MakeVector(self.bars, input_key="Volume") self.rank_opens = Rank(self.bars, input_key='open') self.rank_opens.start(app_context) self.rank_volumes = Rank(self.bars, input_key='Volume') self.rank_volumes.start(app_context) # self.pair_correlation = PairCorrelation(self.rank_opens, self.rank_volumes, length=self.length) self.pair_correlation.start(app_context) super(AlphaFormula3, self)._start(app_context, **kwargs) def _stop(self): super(AlphaFormula3, self)._stop() def on_bar(self, bar): # rank = self.rank_opens.now('value') # logger.info("[%s] %s" % (self.__class__.__name__, rank)) # if np.all(np.isnan(rank)): # return corr = self.pair_correlation.now('value') if np.any(np.isnan(corr)): return weight = [corr[i, i + 2] for i in range(len(self.bars))] # weight = rank weight = -1 * weight[0] portfolio = self.get_portfolio() allocation = portfolio.total_equity * weight delta = allocation - portfolio.stock_value index = self.app_context.app_config.instrument_ids.index(bar.inst_id) qty = delta[index] # logger.info("%s,B,%.2f" % (bar.timestamp, bar.close)) self.order = self.market_order(inst_id=bar.inst_id, action=OrdAction.BUY, qty=qty) if qty > 0 else \ self.market_order(inst_id=bar.inst_id, action=OrdAction.SELL, qty=-qty)
class AlphaFormula3(Strategy): def __init__(self, stg_id=None, stg_configs=None): super(AlphaFormula3, self).__init__(stg_id=stg_id, stg_configs=stg_configs) self.day_count = 0 self.order = None def _start(self, app_context, **kwargs): self.length = self.get_stg_config_value("length", 10) self.bars = [self.app_context.inst_data_mgr.get_series( "Bar.%s.Time.300" % i) for i in self.app_context.app_config.instrument_ids] for bar in self.bars: bar.start(app_context) self.opens = MakeVector(self.bars, input_key='Open') self.volumes = MakeVector(self.bars, input_key="Volume") self.rank_opens = Rank(self.bars, input_key='open') self.rank_opens.start(app_context) self.rank_volumes = Rank(self.bars, input_key='Volume') self.rank_volumes.start(app_context) # self.pair_correlation = PairCorrelation(self.rank_opens, self.rank_volumes, length=self.length) self.pair_correlation.start(app_context) super(AlphaFormula3, self)._start(app_context, **kwargs) def _stop(self): super(AlphaFormula3, self)._stop() def on_bar(self, bar): # rank = self.rank_opens.now('value') # logger.info("[%s] %s" % (self.__class__.__name__, rank)) # if np.all(np.isnan(rank)): # return corr = self.pair_correlation.now('value') if np.any(np.isnan(corr)): return weight = [corr[i, i+2] for i in range(len(self.bars))] # weight = rank weight = -1*weight[0] portfolio = self.get_portfolio() allocation = portfolio.total_equity * weight delta = allocation - portfolio.stock_value index = self.app_context.app_config.instrument_ids.index(bar.inst_id) qty = delta[index] # logger.info("%s,B,%.2f" % (bar.timestamp, bar.close)) self.order = self.market_order(inst_id=bar.inst_id, action=OrdAction.BUY, qty=qty) if qty > 0 else \ self.market_order(inst_id=bar.inst_id, action=OrdAction.SELL, qty=-qty)
def test_with_single_bar_multi_time(self): bar0 = self.app_context.inst_data_mgr.get_series("bar0") bar1 = self.app_context.inst_data_mgr.get_series("bar1") bar0.start(self.app_context) bar1.start(self.app_context) plus = Plus(bar0, bar1, input_key='close') minus = Minus(bar0, bar1, input_key='close') times = Times(bar0, bar1, input_key='close') divides = Divides(bar0, bar1, input_key='close') pcorr = PairCorrelation(bar0, bar1, length=4, input_key='close') plus.start(self.app_context) minus.start(self.app_context) times.start(self.app_context) divides.start(self.app_context) pcorr.start(self.app_context) now = datetime.datetime.now() x = np.array([80.0, 102.0, 101.0, 99.0]) y = np.array([95.0, 98.0, 105.2, 103.3]) ts = [now + datetime.timedelta(0, i * 3) for i in range(4)] x_p_y = x + y x_m_y = x - y x_t_y = x * y x_d_y = x / y bar0.add({"timestamp": ts[0], "close": x[0], "open": 0}) bar1.add({"timestamp": ts[0], "close": y[0], "open": 0}) self.assertEqual(plus.now('value'), 175.0) self.assertEqual(minus.now('value'), -15.0) self.assertEqual(times.now('value'), 7600.0) self.assertEqual(divides.now('value'), 80.0 / 95.0) bar0.add({"timestamp": ts[1], "close": x[1], "open": 0}) bar1.add({"timestamp": ts[1], "close": y[1], "open": 0}) self.assertEqual(plus.now('value'), 200.0) self.assertEqual(minus.now('value'), 4.0) self.assertEqual(times.now('value'), 102.0 * 98.0) self.assertEqual(divides.now('value'), 102.0 / 98.0) bar0.add({"timestamp": ts[2], "close": x[2], "open": 0}) bar1.add({"timestamp": ts[2], "close": y[2], "open": 0}) bar0.add({"timestamp": ts[3], "close": x[3], "open": 0}) bar1.add({"timestamp": ts[3], "close": y[3], "open": 0}) # self.assertEqual(pcorr.now('value'), np.corrcoef(x, y)) self.__np_assert_almost_equal(pcorr.now('value'), np.corrcoef(x, y))
def test_with_single_bar_multi_time(self): bar0 = self.app_context.inst_data_mgr.get_series("bar0") bar1 = self.app_context.inst_data_mgr.get_series("bar1") bar0.start(self.app_context) bar1.start(self.app_context) plus = Plus(bar0, bar1, input_key='close') minus = Minus(bar0, bar1, input_key='close') times = Times(bar0, bar1, input_key='close') divides = Divides(bar0, bar1, input_key='close') pcorr = PairCorrelation(bar0, bar1, length=4, input_key='close') plus.start(self.app_context) minus.start(self.app_context) times.start(self.app_context) divides.start(self.app_context) pcorr.start(self.app_context) now = datetime.datetime.now() x = np.array([80.0, 102.0, 101.0, 99.0]) y = np.array([95.0, 98.0, 105.2, 103.3]) ts = [now + datetime.timedelta(0, i*3) for i in range(4)] x_p_y = x + y x_m_y = x - y x_t_y = x * y x_d_y = x / y bar0.add({"timestamp": ts[0], "close": x[0], "open": 0}) bar1.add({"timestamp": ts[0], "close": y[0], "open": 0}) self.assertEqual(plus.now('value'), 175.0) self.assertEqual(minus.now('value'), -15.0) self.assertEqual(times.now('value'), 7600.0) self.assertEqual(divides.now('value'), 80.0/95.0) bar0.add({"timestamp": ts[1], "close": x[1], "open": 0}) bar1.add({"timestamp": ts[1], "close": y[1], "open": 0}) self.assertEqual(plus.now('value'), 200.0) self.assertEqual(minus.now('value'), 4.0) self.assertEqual(times.now('value'), 102.0*98.0) self.assertEqual(divides.now('value'), 102.0/98.0) bar0.add({"timestamp": ts[2], "close": x[2], "open": 0}) bar1.add({"timestamp": ts[2], "close": y[2], "open": 0}) bar0.add({"timestamp": ts[3], "close": x[3], "open": 0}) bar1.add({"timestamp": ts[3], "close": y[3], "open": 0}) # self.assertEqual(pcorr.now('value'), np.corrcoef(x, y)) self.__np_assert_almost_equal(pcorr.now('value'), np.corrcoef(x, y))
def test_with_pair_corr_with_vec(self): bar0 = self.app_context.inst_data_mgr.get_series("bar0") bar1 = self.app_context.inst_data_mgr.get_series("bar1") bar2 = self.app_context.inst_data_mgr.get_series("bar2") bar3 = self.app_context.inst_data_mgr.get_series("bar3") bar0.start(self.app_context) bar1.start(self.app_context) bar2.start(self.app_context) bar3.start(self.app_context) vec0 = MakeVector([bar0, bar1], input_key='close') vec1 = MakeVector([bar2, bar3], input_key='close') vec0.start(self.app_context) vec1.start(self.app_context) pcorr = PairCorrelation(vec0, vec1, length=4, input_key=PipeLine.VALUE) pcorr.start(self.app_context) now = datetime.datetime.now() x0 = np.array([80.0, 102.0, 101.0, 99.0 ]) x1 = np.array([102.0, 101.5, 99.0, 97.0]) x2 = np.array([94.0, 98.5, 91.0, 87.0]) x3 = np.array([104.5, 107.5, 97.0, 91.0]) ts = [now + datetime.timedelta(0, i*3) for i in range(4)] for i in range(4): bar0.add({"timestamp": ts[i], "close": x0[i], "open": 0}) bar1.add({"timestamp": ts[i], "close": x1[i], "open": 0}) bar2.add({"timestamp": ts[i], "close": x2[i], "open": 0}) bar3.add({"timestamp": ts[i], "close": x3[i], "open": 0}) x = np.vstack([x0, x1]) y = np.vstack([x2, x3]) self.__np_assert_almost_equal(pcorr.now('value'), np.corrcoef(x, y))
def test_with_pair_corr_with_vec(self): bar0 = self.app_context.inst_data_mgr.get_series("bar0") bar1 = self.app_context.inst_data_mgr.get_series("bar1") bar2 = self.app_context.inst_data_mgr.get_series("bar2") bar3 = self.app_context.inst_data_mgr.get_series("bar3") bar0.start(self.app_context) bar1.start(self.app_context) bar2.start(self.app_context) bar3.start(self.app_context) vec0 = MakeVector([bar0, bar1], input_key='close') vec1 = MakeVector([bar2, bar3], input_key='close') vec0.start(self.app_context) vec1.start(self.app_context) pcorr = PairCorrelation(vec0, vec1, length=4, input_key=PipeLine.VALUE) pcorr.start(self.app_context) now = datetime.datetime.now() x0 = np.array([80.0, 102.0, 101.0, 99.0]) x1 = np.array([102.0, 101.5, 99.0, 97.0]) x2 = np.array([94.0, 98.5, 91.0, 87.0]) x3 = np.array([104.5, 107.5, 97.0, 91.0]) ts = [now + datetime.timedelta(0, i * 3) for i in range(4)] for i in range(4): bar0.add({"timestamp": ts[i], "close": x0[i], "open": 0}) bar1.add({"timestamp": ts[i], "close": x1[i], "open": 0}) bar2.add({"timestamp": ts[i], "close": x2[i], "open": 0}) bar3.add({"timestamp": ts[i], "close": x3[i], "open": 0}) x = np.vstack([x0, x1]) y = np.vstack([x2, x3]) self.__np_assert_almost_equal(pcorr.now('value'), np.corrcoef(x, y))