コード例 #1
0
ファイル: mmd_online.py プロジェクト: ojcobb/alibi-detect
    def _configure_thresholds(self):

        # Each bootstrap sample splits the reference samples into a sub-reference sample (x)
        # and an extended test window (y). The extended test window will be treated as W overlapping
        # test windows of size W (so 2W-1 test samples in total)

        w_size = self.window_size
        etw_size = 2*w_size-1  # etw = extended test window
        rw_size = self.n - etw_size  # rw = sub-ref window

        perms = [torch.randperm(self.n) for _ in range(self.n_bootstraps)]
        x_inds_all = [perm[:-etw_size] for perm in perms]
        y_inds_all = [perm[-etw_size:] for perm in perms]

        if self.verbose:
            print("Generating permutations of kernel matrix..")
        # Need to compute mmd for each bs for each of W overlapping windows
        # Most of the computation can be done once however
        # We avoid summing the rw_size^2 submatrix for each bootstrap sample by instead computing the full
        # sum once and then subtracting the relavent parts (k_xx_sum = k_full_sum - 2*k_xy_sum - k_yy_sum).
        # We also reduce computation of k_xy_sum from O(nW) to O(W) by caching column sums

        k_full_sum = zero_diag(self.k_xx).sum()
        k_xy_col_sums_all = [
            self.k_xx[x_inds][:, y_inds].sum(0) for x_inds, y_inds in
            (tqdm(zip(x_inds_all, y_inds_all), total=self.n_bootstraps) if self.verbose else
                zip(x_inds_all, y_inds_all))
        ]
        k_xx_sums_all = [(
            k_full_sum - zero_diag(self.k_xx[y_inds][:, y_inds]).sum() - 2*k_xy_col_sums.sum()
        )/(rw_size*(rw_size-1)) for y_inds, k_xy_col_sums in zip(y_inds_all, k_xy_col_sums_all)]
        k_xy_col_sums_all = [k_xy_col_sums/(rw_size*w_size) for k_xy_col_sums in k_xy_col_sums_all]

        # Now to iterate through the W overlapping windows
        thresholds = []
        p_bar = tqdm(range(w_size), "Computing thresholds") if self.verbose else range(w_size)
        for w in p_bar:
            y_inds_all_w = [y_inds[w:w+w_size] for y_inds in y_inds_all]  # test windows of size w_size
            mmds = [(
                k_xx_sum +
                zero_diag(self.k_xx[y_inds_w][:, y_inds_w]).sum()/(w_size*(w_size-1)) -
                2*k_xy_col_sums[w:w+w_size].sum()
            ) for k_xx_sum, y_inds_w, k_xy_col_sums in zip(k_xx_sums_all, y_inds_all_w, k_xy_col_sums_all)
            ]
            mmds = torch.tensor(mmds)  # an mmd for each bootstrap sample

            # Now we discard all bootstrap samples for which mmd is in top (1/ert)% and record the thresholds
            thresholds.append(quantile(mmds, 1-self.fpr))
            y_inds_all = [y_inds_all[i] for i in range(len(y_inds_all)) if mmds[i] < thresholds[-1]]
            k_xx_sums_all = [
                k_xx_sums_all[i] for i in range(len(k_xx_sums_all)) if mmds[i] < thresholds[-1]
            ]
            k_xy_col_sums_all = [
                k_xy_col_sums_all[i] for i in range(len(k_xy_col_sums_all)) if mmds[i] < thresholds[-1]
            ]

        self.thresholds = thresholds
コード例 #2
0
ファイル: mmd_online.py プロジェクト: ojcobb/alibi-detect
    def score(self, x_t: np.ndarray) -> Union[float, None]:
        """
        Compute the test-statistic (squared MMD) between the reference window and test window.
        If the test-window is not yet full then a test-statistic of None is returned.

        Parameters
        ----------
        x_t
            A single instance.

        Returns
        -------
        Squared MMD estimate between reference window and test window
        """
        x_t = torch.from_numpy(x_t[None, :]).to(self.device)
        kernel_col = self.kernel(self.x_ref[self.ref_inds], x_t)

        self.test_window = torch.cat([self.test_window[(1-self.window_size):], x_t], 0)
        self.k_xy = torch.cat([self.k_xy[:, (1-self.window_size):], kernel_col], 1)
        k_yy = self.kernel(self.test_window, self.test_window)
        mmd = (
            self.k_xx_sub_sum +
            zero_diag(k_yy).sum()/(self.window_size*(self.window_size-1)) -
            2*self.k_xy.mean()
        )

        return float(mmd.detach().cpu())
コード例 #3
0
ファイル: mmd_online.py プロジェクト: ojcobb/alibi-detect
 def _configure_ref_subset(self):
     etw_size = 2*self.window_size-1  # etw = extended test window
     rw_size = self.n - etw_size  # rw = ref-window
     # Make split and ensure it doesn't cause an initial detection
     mmd_init = None
     while mmd_init is None or mmd_init >= self.get_threshold(0):
         # Make split
         perm = torch.randperm(self.n)
         self.ref_inds, self.init_test_inds = perm[:rw_size], perm[-self.window_size:]
         self.test_window = self.x_ref[self.init_test_inds]
         # Compute initial mmd to check for initial detection
         self.k_xx_sub = self.k_xx[self.ref_inds][:, self.ref_inds]
         self.k_xx_sub_sum = zero_diag(self.k_xx_sub).sum()/(rw_size*(rw_size-1))
         self.k_xy = self.kernel(self.x_ref[self.ref_inds], self.test_window)
         k_yy = self.kernel(self.test_window, self.test_window)
         mmd_init = (
             self.k_xx_sub_sum +
             zero_diag(k_yy).sum()/(self.window_size*(self.window_size-1)) -
             2*self.k_xy.mean()
         )
コード例 #4
0
    def score(self, x_t: Union[np.ndarray, Any]) -> float:
        """
        Compute the test-statistic (squared MMD) between the reference window and test window.

        Parameters
        ----------
        x_t
            A single instance to be added to the test-window.

        Returns
        -------
        Squared MMD estimate between reference window and test window.
        """
        x_t = super()._preprocess_xt(x_t)
        x_t = torch.from_numpy(x_t).to(self.device)
        self._update_state(x_t)
        k_yy = self.kernel(self.test_window, self.test_window)
        mmd = (self.k_xx_sub_sum + zero_diag(k_yy).sum() /
               (self.window_size *
                (self.window_size - 1)) - 2 * self.k_xy.mean())
        return float(mmd.detach().cpu())
コード例 #5
0
def test_zero_diag():
    ones = torch.ones(10, 10)
    ones_zd = zero_diag(ones)
    assert ones_zd.shape == (10, 10)
    assert float(ones_zd.trace()) == 0
    assert float(ones_zd.sum()) == 90