コード例 #1
0
ファイル: links2exons.py プロジェクト: santayana/cgat
        if link.mQueryToken == link.mSbjctToken:
            continue

        if link.mQueryToken in cds and \
                link.mSbjctToken in cds:

            # expand to codons
            if param_expand:
                link.mQueryFrom = (link.mQueryFrom - 1) * 3 + 1
                link.mSbjctFrom = (link.mSbjctFrom - 1) * 3 + 1
                link.mQueryAli = ScaleAlignment(link.mQueryAli, 3)
                link.mSbjctAli = ScaleAlignment(link.mSbjctAli, 3)

            map_row2col.clear()
            alignlib_lite.AlignmentFormatExplicit(
                link.mQueryFrom, link.mQueryAli, link.mSbjctFrom,
                link.mSbjctAli).copy(map_row2col)

            # test all combinations, the alignment might be a suboptimal alignment in case
            # of repeats.
            for e1 in cds[link.mQueryToken]:
                for e2 in cds[link.mSbjctToken]:
                    tmp_map_row2col.clear()
                    if param_expand:
                        alignlib_lite.copyAlignment(
                            tmp_map_row2col,
                            map_row2col,
                            e1.mPeptideFrom + 1,
                            e1.mPeptideTo,
                            e2.mPeptideFrom + 1,
                            e2.mPeptideTo,
コード例 #2
0
def main(argv=None):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if argv == None: argv = sys.argv

    parser = E.OptionParser(
        version=
        "%prog version: $Id: gpipe/compare_predictions2exons.py 2011 2008-07-04 10:40:51Z andreas $",
        usage=globals()["__doc__"])

    parser.add_option("-g",
                      "--genome-file",
                      dest="genome_file",
                      type="string",
                      help="filename with genome.")

    parser.add_option("-b",
                      "--boundaries",
                      dest="filename_boundaries",
                      type="string",
                      help="filename with exon boundaries.")

    parser.add_option("-e",
                      "--exons",
                      dest="filename_exons",
                      type="string",
                      help="filename with exons (output).")

    parser.add_option("-p",
                      "--peptides",
                      dest="filename_peptides",
                      type="string",
                      help="filename with peptide sequences.")

    parser.add_option(
        "-w",
        "--write-notfound",
        dest="write_notfound",
        action="store_true",
        help="print exons for predictions not found in reference.")

    parser.add_option("-q",
                      "--quality-pide",
                      dest="quality_threshold_pide",
                      type="int",
                      help="quality threshold (pide) for exons.")

    parser.set_defaults(
        genome_file="genome",
        filename_boundaries=None,
        filename_exons=None,
        filename_peptides=None,
        quality_threshold_pide=0,
        write_notfound=False,
        ## allowed number of nucleotides for exon boundaries to
        ## be considered equivalent.
        slipping_exon_boundary=9,
        ## stop codons to search for
        stop_codons=("TAG", "TAA", "TGA"),
    )

    (options, args) = E.Start(parser, add_pipe_options=True)

    if len(args) > 0:
        print USAGE, "no arguments required."
        sys.exit(2)

    reference_exon_boundaries = {}
    if options.filename_boundaries:
        reference_exon_boundaries = Exons.ReadExonBoundaries(open(
            options.filename_boundaries, "r"),
                                                             do_invert=1,
                                                             remove_utr=1)
        E.info("read exon boundaries for %i queries" %
               len(reference_exon_boundaries))

    if options.filename_exons:
        outfile_exons = open(options.filename_exons, "w")
        outfile_exons.write("%s\n" % "\t".join(
            ("prediction_id", "exon_id", "exon_from", "exon_to", "exon_frame",
             "reference_id", "reference_from", "reference_to",
             "reference_phase", "pidentity", "psimilarity", "nframeshifts",
             "ngaps", "nstopcodons", "is_ok", "genome_exon_from",
             "genome_exon_to")))

    else:
        outfile_exons = None

    if options.filename_peptides:
        peptide_sequences = Genomics.ReadPeptideSequences(
            open(options.filename_peptides, "r"))
        E.info("read peptide sequences for %i queries" %
               len(peptide_sequences))
    else:
        peptide_sequences = {}

    entry = PredictionParser.PredictionParserEntry()
    last_filename_genome = None

    nfound, nmissed_exons, nmissed_length = 0, 0, 0
    nempty_alignments = 0

    fasta = IndexedFasta.IndexedFasta(options.genome_file)

    options.stdout.write("%s\n" % "\t".join(
        ("prediction_id", "number", "dubious_exons", "boundaries_sum",
         "boundaries_max", "identical_exons", "inserted_exons",
         "deleted_exons", "inserted_introns", "deleted_introns",
         "truncated_Nterminus", "truncated_Cterminus", "deleted_Nexons",
         "deleted_Cexons", "inserted_Nexons", "inserted_Cexons")))

    for line in sys.stdin:

        if line[0] == "#": continue

        try:
            entry.Read(line)
        except ValueError, msg:
            print "# parsing failed with msg %s in line %s" % (msg, line[:-1])
            sys.exit(1)

        exons = Genomics.Alignment2ExonBoundaries(
            entry.mMapPeptide2Genome,
            query_from=entry.mQueryFrom,
            sbjct_from=entry.mSbjctGenomeFrom,
            add_stop_codon=0)

        if exons[-1][4] != entry.mSbjctGenomeTo:
            print "# WARNING: discrepancy in exon calculation!!!"
            for e in exons:
                print "#", str(e)
            print "#", str(entry)

        if options.loglevel >= 5:
            for e in exons:
                print "#", str(e)

        genomic_fragment = fasta.getSequence(entry.mSbjctToken,
                                             entry.mSbjctStrand,
                                             entry.mSbjctGenomeFrom,
                                             entry.mSbjctGenomeTo)

        skip = False
        if peptide_sequences.has_key(entry.mQueryToken):

            query_sequence = alignlib_lite.makeSequence(
                peptide_sequences[entry.mQueryToken])
            sbjct_sequence = alignlib_lite.makeSequence(entry.mTranslation)

            percent_similarity, percent_identity = 0, 0
            if query_sequence.getLength(
            ) < entry.mMapPeptide2Translation.getRowTo():
                print "# WARNING: query sequence %s is too short: %i %i" % (
                    entry.mQueryToken, query_sequence.getLength(),
                    entry.mMapPeptide2Translation.getRowTo())
                sys.stdout.flush()
                nmissed_length += 1
                skip = True

            elif sbjct_sequence.getLength(
            ) < entry.mMapPeptide2Translation.getColTo():
                print "# WARNING: sbjct sequence %s is too short: %i %i" % (
                    entry.mSbjctToken, sbjct_sequence.getLength(),
                    entry.mMapPeptide2Translation.getColTo())
                sys.stdout.flush()
                nmissed_length += 1
                skip = True
            else:
                alignlib_lite.rescoreAlignment(
                    entry.mMapPeptide2Translation, query_sequence,
                    sbjct_sequence,
                    alignlib_lite.makeScorer(query_sequence, sbjct_sequence))
                percent_identity = alignlib_lite.calculatePercentIdentity(
                    entry.mMapPeptide2Translation, query_sequence,
                    sbjct_sequence) * 100
                percent_similarity = alignlib_lite.calculatePercentSimilarity(
                    entry.mMapPeptide2Translation) * 100

            E.debug(
                "prediction %s: percent identity/similarity: before=%5.2f/%5.2f, realigned=%5.2f/%5.2f"
                %
                (str(entry.mPredictionId), entry.mPercentSimilarity,
                 entry.mPercentIdentity, percent_similarity, percent_identity))

        else:
            query_sequence = None
            sbjct_sequence = None

        # default values
        exons_num_exons = "na"
        exons_boundaries_sum = "na"
        exons_boundaries_max = "na"
        dubious_exons = "na"

        ndeleted_exons, ninserted_exons, ndeleted_introns, ninserted_introns, nidentical_exons = 0, 0, 0, 0, 0
        truncated_Nterminal_exon, truncated_Cterminal_exon = 0, 0
        ndeleted_Nexons, ndeleted_Cexons = 0, 0
        ninserted_Nexons, ninserted_Cexons = 0, 0

        exons_offset = exons[0][3]

        if not reference_exon_boundaries.has_key(entry.mQueryToken):
            print "# WARNING: sequence %s has no exon boundaries" % (
                entry.mQueryToken)
            sys.stdout.flush()
            nmissed_exons += 1
            skip = True

        if not skip:

            nfound += 1

            ref_exons = reference_exon_boundaries[entry.mQueryToken]

            ref_exons_offset = ref_exons[0].mGenomeFrom

            exons_num_exons = len(ref_exons) - len(exons)
            exons_boundaries_sum = 0
            exons_phase = 0
            exons_boundaries_max = 0
            dubious_exons = 0

            inserted_exons = 0
            temp_inserted_exons = 0

            if options.loglevel >= 3:
                for e in exons:
                    options.stdlog.write("# %s\n" % str(e))
                for e in ref_exons:
                    options.stdlog.write("# %s\n" % str(e))

            min_pide = entry.mPercentIdentity * options.quality_threshold_pide / 100

            in_sync = 0
            e, r = 0, 0

            while e < len(exons) and r < len(ref_exons):

                this_e, this_r = e + 1, r + 1
                percent_identity = 0
                percent_similarity = 0
                is_good_exon = 0

                if options.loglevel >= 4:
                    options.stdlog.write("# current exons: %i and %i\n" %
                                         (e, r))
                    sys.stdout.flush()

                exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to, exon_ali = exons[
                    e][0:6]
                ref_from, ref_to, ref_phase, ref_genome_from, ref_genome_to = (
                    ref_exons[r].mPeptideFrom, ref_exons[r].mPeptideTo,
                    ref_exons[r].frame, ref_exons[r].mGenomeFrom,
                    ref_exons[r].mGenomeTo)

                ref_genome_from -= ref_exons_offset
                ref_genome_to -= ref_exons_offset

                ## get percent identity for exon
                exon_percent_identity = 0
                exon_percent_similarity = 0

                if query_sequence and sbjct_sequence:

                    tmp_ali = alignlib_lite.makeAlignmentVector()

                    xquery_from = exon_from / 3
                    xquery_to = exon_to / 3

                    alignlib_lite.copyAlignment(tmp_ali,
                                                entry.mMapPeptide2Translation,
                                                xquery_from, xquery_to)

                    if tmp_ali.getLength() == 0:
                        options.stdlog.write(
                            "# WARNING: empty alignment %s\n" % str(
                                (ref_from, exon_from, ref_to, exon_to,
                                 xquery_from, xquery_to)))
                        nempty_alignments += 1
                    else:
                        if options.loglevel >= 5:
                            options.stdlog.write("# %s\n" % str(
                                alignlib_lite.AlignmentFormatExplicit(
                                    tmp_ali, query_sequence, sbjct_sequence)))

                        exon_percent_identity = alignlib_lite.calculatePercentIdentity(
                            tmp_ali, query_sequence, sbjct_sequence) * 100
                        exon_percent_similarity = alignlib_lite.calculatePercentSimilarity(
                            tmp_ali) * 100

                if exon_percent_identity >= min_pide:
                    is_good_exon = 1
                else:
                    is_good_exon = 0

                if e < len(exons) - 1:
                    (next_exon_from, next_exon_to, next_exon_phase,
                     next_exon_genome_from, next_exon_genome_to,
                     next_exon_ali) = exons[e + 1][0:6]
                else:
                    (next_exon_from, next_exon_to, next_exon_phase,
                     next_exon_genome_from, next_exon_genome_to,
                     next_exon_ali) = 0, 0, 0, 0, 0, []

                if r < len(ref_exons) - 1:
                    next_ref_from, next_ref_to, next_ref_phase = (
                        ref_exons[r + 1].mPeptideFrom,
                        ref_exons[r + 1].mPeptideTo, ref_exons[r + 1].frame)
                else:
                    next_ref_from, next_ref_to, next_ref_phase = 0, 0, 0

                if options.loglevel >= 2:
                    options.stdlog.write("# %s\n" % "\t".join(
                        map(str, (entry.mQueryToken, exon_from, exon_to,
                                  exon_phase, exon_genome_from, exon_genome_to,
                                  ref_from, ref_to, ref_phase))))
                    sys.stdout.flush()

                # beware of small exons.
                # if less than options.slipping_exon_boundary: boundary is 0
                # check if end is more than options.splipping_exon_boundary apart as well.
                if exon_to - exon_from <= options.slipping_exon_boundary or \
                        ref_to - ref_from <= options.slipping_exon_boundary:
                    boundary = 0
                else:
                    boundary = options.slipping_exon_boundary

                if ref_to <= exon_from + boundary and \
                   ref_to <= exon_to - options.slipping_exon_boundary:
                    ## no overlap
                    is_good_exon = 0
                    if e == 0:
                        ndeleted_Nexons += 1
                    else:
                        ndeleted_exons += 1
                    r += 1
                    exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to = 0, 0, 0, 0, 0
                    overlap = 0
                elif exon_to <= ref_from + boundary and \
                         exon_to <= ref_to - options.slipping_exon_boundary:
                    ## no overlap
                    is_good_exon = 0
                    if r == 0:
                        ninserted_Nexons += 1
                    else:
                        ninserted_exons += 1
                    e += 1
                    ref_from, ref_to, ref_phase = 0, 0, 0
                    overlap = 0
                else:
                    ## overlap
                    overlap = 1
                    dfrom = int(math.fabs(exon_from - ref_from))
                    dto = int(math.fabs(exon_to - ref_to))

                    ## get percent identity for overlapping fragment
                    if query_sequence and sbjct_sequence:
                        ## this the problem
                        tmp_ali = alignlib_lite.makeAlignmentVector()

                        xquery_from = max(ref_from / 3, exon_from / 3)
                        xquery_to = min(ref_to / 3, exon_to / 3)

                        alignlib_lite.copyAlignment(
                            tmp_ali, entry.mMapPeptide2Translation,
                            xquery_from, xquery_to)

                        if tmp_ali.getLength() == 0:
                            options.stdlog.write(
                                "# warning: empty alignment %s\n" % str(
                                    (ref_from, exon_from, ref_to, exon_to,
                                     xquery_from, xquery_to)))
                            percent_identity = 0
                            percent_similarity = 0
                        else:
                            if options.loglevel >= 5:
                                print str(
                                    alignlib_lite.AlignmentFormatExplicit(
                                        tmp_ali, query_sequence,
                                        sbjct_sequence))

                            percent_identity = alignlib_lite.calculatePercentIdentity(
                                tmp_ali, query_sequence, sbjct_sequence) * 100
                            percent_similarity = alignlib_lite.calculatePercentSimilarity(
                                tmp_ali) * 100

                    if percent_identity >= min_pide:
                        is_good_exon = 1
                    else:
                        is_good_exon = 0
                        dubious_exons += 1

                    ## adjust regions for terminal exons
                    if e == 0 and r == 0 and dfrom <= (entry.mQueryFrom -
                                                       1) * 3 and dfrom > 0:
                        if is_good_exon:
                            truncated_Nterminal_exon = dfrom
                        dfrom = 0

                    ## truncated terminal exons
                    if e == len(exons) - 1 and r == len(
                            ref_exons) - 1 and dto <= (
                                entry.mQueryLength -
                                entry.mQueryTo) * 3 and dto > 0:
                        if is_good_exon:
                            truncated_Cterminal_exon = dto
                        dto = 0

                    ## do not count deviations for terminal query exons
                    if e == 0 and dfrom <= entry.mQueryFrom * 3 and dfrom > 0:
                        dfrom = 0

                    if e == len(exons) - 1 and dto <= (
                            entry.mQueryLength -
                            entry.mQueryTo) * 3 and dto > 0:
                        dto = 0

                    ## permit difference of one codon (assumed to be stop)
                    if e == len(exons) - 1 and r == len(
                            ref_exons) - 1 and dto == 3:
                        dto = 0

                    ## deal with different boundary conditions:
                    if dfrom == 0 and dto == 0:
                        if is_good_exon: nidentical_exons += 1
                        e += 1
                        r += 1
                    ## next exon within this ref_exon
                    elif exon_to < ref_to and next_exon_to and next_exon_to <= ref_to + options.slipping_exon_boundary:
                        if is_good_exon: ninserted_introns += 1
                        e += 1
                        in_sync = 1
                        dto = 0
                    ## next ref_exon within this exon
                    elif ref_to < exon_to and next_ref_to and next_ref_to <= exon_to + options.slipping_exon_boundary:
                        if is_good_exon: ndeleted_introns += 1
                        r += 1
                        in_sync = 1
                        dto = 0
                    else:
                        e += 1
                        r += 1
                        if in_sync:
                            dfrom = 0

                    if is_good_exon:
                        exons_boundaries_sum += dfrom + dto
                        exons_boundaries_max = max(dfrom, exons_boundaries_max)
                        exons_boundaries_max = max(dto, exons_boundaries_max)

                    ###########################################################
                    ## count inserted/deleted introns and misplaced boundaries
                    ##
                    ## if exon and next_exon in ref_exon: inserted intron
                    ## if ref_exon and next_ref_exon in exon: deleted intron

                if outfile_exons:

                    if genomic_fragment and exon_genome_to:
                        nintrons, nframeshifts, ngaps, nsplits, nstopcodons, disruptions = Genomics.CountGeneFeatures(
                            exon_genome_from - entry.mSbjctGenomeFrom,
                            exon_ali,
                            genomic_fragment,
                            border_stop_codon=0)
                    else:
                        nintrons, nframeshifts, ngaps, nsplits, nstopcodons = 0, 0, 0, 0, 0

                    if exon_to == 0: this_e = 0
                    if ref_to == 0: this_r = 0
                    outfile_exons.write(
                        string.join(
                            map(str, (
                                entry.mPredictionId,
                                this_e,
                                exon_from,
                                exon_to,
                                exon_phase,
                                this_r,
                                ref_from,
                                ref_to,
                                ref_phase,
                                percent_identity,
                                percent_similarity,
                                nframeshifts,
                                ngaps,
                                nstopcodons,
                                is_good_exon,
                                exon_genome_from,
                                exon_genome_to,
                            )), "\t") + "\n")

            while e < len(exons):
                exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to = exons[
                    e][0:5]
                e += 1
                ninserted_Cexons += 1

                if outfile_exons:
                    outfile_exons.write(
                        string.join(
                            map(str, (
                                entry.mPredictionId,
                                e,
                                exon_from,
                                exon_to,
                                exon_phase,
                                0,
                                0,
                                0,
                                0,
                                0,
                                0,
                                0,
                                0,
                                0,
                                1,
                                exon_genome_from,
                                exon_genome_to,
                            )), "\t") + "\n")

            while r < len(ref_exons):
                ref_from, ref_to, ref_phase, ref_genome_from, ref_genome_to = (
                    ref_exons[r].mPeptideFrom, ref_exons[r].mPeptideTo,
                    ref_exons[r].frame, ref_exons[r].mGenomeFrom,
                    ref_exons[r].mGenomeTo)
                ndeleted_Cexons += 1
                ref_genome_from -= ref_exons_offset
                ref_genome_to -= ref_exons_offset
                r += 1
                if outfile_exons:
                    outfile_exons.write(
                        string.join(
                            map(str, (
                                entry.mPredictionId,
                                0,
                                0,
                                0,
                                0,
                                r,
                                ref_from,
                                ref_to,
                                ref_phase,
                                0,
                                0,
                                0,
                                0,
                                0,
                                0,
                                0,
                                0,
                            )), "\t") + "\n")
        else:
            if options.write_notfound:
                this_e = 0
                ## use prediction's identity/similarity for exons.
                ## This will still then flag stop-codons in later analysis
                percent_identity = entry.mPercentIdentity
                percent_similarity = entry.mPercentSimilarity

                for exon in exons:
                    this_e += 1
                    exon_from, exon_to, exon_phase, exon_genome_from, exon_genome_to, exon_ali = exon[
                        0:6]
                    if genomic_fragment:
                        nintrons, nframeshifts, ngaps, nsplits, nstopcodons, disruptions = Genomics.CountGeneFeatures(
                            exon_genome_from - entry.mSbjctGenomeFrom,
                            exon_ali, genomic_fragment)

                    outfile_exons.write(
                        string.join(
                            map(str, (
                                entry.mPredictionId,
                                this_e,
                                exon_from,
                                exon_to,
                                exon_phase,
                                0,
                                0,
                                0,
                                0,
                                percent_identity,
                                percent_similarity,
                                nframeshifts,
                                ngaps,
                                nstopcodons,
                                1,
                                exon_genome_from,
                                exon_genome_to,
                            )), "\t") + "\n")

        options.stdout.write("\t".join(
            map(str, (entry.mPredictionId, exons_num_exons, dubious_exons,
                      exons_boundaries_sum, exons_boundaries_max,
                      nidentical_exons, ninserted_exons, ndeleted_exons,
                      ninserted_introns, ndeleted_introns,
                      truncated_Nterminal_exon, truncated_Cterminal_exon,
                      ndeleted_Nexons, ndeleted_Cexons, ninserted_Nexons,
                      ninserted_Cexons))) + "\n")
コード例 #3
0
def WriteExons(token1, peptide1, cds1, transcript1, token2, peptide2, cds2,
               transcript2, peptide_map_a2b):

    if param_loglevel >= 3:
        for cd in cds1:
            print "#", str(cd)
        for cd in cds2:
            print "#", str(cd)
        print "# peptide_map_a2b", str(
            alignlib_lite.AlignmentFormatExplicit(peptide_map_a2b))
        sys.stdout.flush()

    dna_map_a2b = Genomics.AlignmentProtein2CDNA(peptide_map_a2b, cds1, cds2)

    if len(cds1) != len(cds2):
        if param_loglevel >= 4:
            print ""  # WARNING: different number of exons!"

    seq1 = alignlib_lite.makeSequence(transcript1)
    seq2 = alignlib_lite.makeSequence(transcript2)
    tmp_map_a2b = alignlib_lite.makeAlignmentVector()

    dialign = WrapperDialign.Dialign("-n")
    dialignlgs = WrapperDialign.Dialign("-n -it -thr 2 -lmax 30 -smin 8")
    dba = WrapperDBA.DBA()
    #clustal = WrapperClustal.Clustal()

    matrix, gop, gep = global_substitution_matrix
    alignator_nw = alignlib_lite.makeAlignatorDPFullDP(
        alignlib_lite.ALIGNMENT_GLOBAL, gop, gep, matrix)
    alignator_sw = alignlib_lite.makeAlignatorDPFullDP(
        alignlib_lite.ALIGNMENT_LOCAL, gop, gep, matrix)

    # concatenated alignments for exons:
    # 1: only the common parts
    ali_common1 = ""
    ali_common2 = ""

    e1, e2 = 0, 0
    while cds1[e1].mGenomeTo <= dna_map_a2b.getRowFrom():
        e1 += 1
    while cds2[e2].mGenomeTo <= dna_map_a2b.getColFrom():
        e2 += 1

    nskipped, nerrors = 0, 0

    if param_loglevel >= 5:
        nmapped = 0
        for x in range(dna_map_a2b.getRowFrom(), dna_map_a2b.getRowTo() + 1):
            if dna_map_a2b.mapRowToCol(x) >= 0:
                nmapped += 1
        print "# nmapped=", nmapped
        print str(alignlib_lite.AlignmentFormatEmissions(dna_map_a2b))

    # declare alignments used
    map_intron_a2b = alignlib_lite.makeAlignmentVector()

    result = Exons.CompareGeneStructures(cds1,
                                         cds2,
                                         map_cmp2ref=peptide_map_a2b)

    if param_loglevel >= 2:
        print result.Pretty("#")

    nskipped_exons, nskipped_introns = 0, 0

    last_e1, last_e2 = None, None

    for link in result.mEquivalences:

        if link.mCoverage <= param_min_exon_coverage:
            nskipped_exons += 1
            continue

        e1, e2 = link.mId1, link.mId2

        c1 = cds1[e1]
        c2 = cds2[e2]
        exon_fragment1 = transcript1[c1.mGenomeFrom:c1.mGenomeTo]
        exon_fragment2 = transcript2[c2.mGenomeFrom:c2.mGenomeTo]

        #######################################################################
        # write unaligned exons
        if param_write_exons:
            pair = AlignedPairs.UnalignedPair()

            pair.mCategory = "exon"
            pair.mToken1 = token1
            pair.mId1 = e1 + 1
            pair.mNum1 = len(cds1)
            pair.mLen1 = len(exon_fragment1)
            pair.mSequence1 = exon_fragment1
            pair.mToken2 = token2
            pair.mId2 = e2 + 1
            pair.mNum2 = len(cds2)
            pair.mLen2 = len(exon_fragment2)
            pair.mSequence2 = exon_fragment2
            pair.mFrom1, pair.mTo1 = c1.mGenomeFrom, c1.mGenomeTo,
            pair.mFrom2, pair.mTo2 = c2.mGenomeFrom, c2.mGenomeTo,

            print str(pair)
            sys.stdout.flush()

        #######################################################################
        # build alignment for overlap of both exons
# tmp_map_a2b.clear()
# alignlib_lite.copyAlignment( tmp_map_a2b, dna_map_a2b,
# c1.mGenomeFrom + 1, c1.mGenomeTo )

# if param_loglevel >= 5:
# print "# alignment: %i-%i" % (c1.mGenomeFrom + 1, c1.mGenomeTo)
# for x in alignlib_lite.writeAlignmentTable( tmp_map_a2b ).split("\n"):
# print "#", x
# if tmp_map_a2b.getLength() == 0:
# if param_loglevel >= 1:
# print "# WARNING: empty alignment between exon %i (from %i to %i) and exon %i" % \
##                       (e1,c1.mGenomeFrom + 1, c1.mGenomeTo, e2)
# print "## peptide_map_a2b", peptide_map_a2b.getRowFrom(), peptide_map_a2b.getRowTo(),\
##                       peptide_map_a2b.getColFrom(), peptide_map_a2b.getColTo(), \
# Alignlib.writeAlignmentCompressed(peptide_map_a2b)
# print "## dna_map_a2b", dna_map_a2b.getRowFrom(), dna_map_a2b.getRowTo(),\
##                       dna_map_a2b.getColFrom(), dna_map_a2b.getColTo(), \
# Alignlib.writeAlignmentCompressed(dna_map_a2b)
# for cd in cds1: print "##", str(cd)
# for cd in cds2: print "##", str(cd)
##             nerrors += 1
# continue
##         data = map(lambda x: x.split("\t"), alignlib_lite.writePairAlignment( seq1, seq2, tmp_map_a2b  ).split("\n"))
# if "caligned" in param_write_exons :
# print "exon\tcaligned\t%s\t%i\t%s\t%i\t%s\t%s\t%s\t%s\t%s\t%s" % ( token1, e1,
##                                                                                token2, e2,
##                                                                                data[0][0], data[0][2],
##                                                                                data[1][0], data[1][2],
# data[0][1], data[1][1] )
##         ali_common1 += data[0][1]
##         ali_common2 += data[1][1]
#######################################################################
# write alignment of introns for orthologous introns
# orthologous introns are between orthologous exons
        if param_write_introns:

            if last_e1 is not None:
                if e1 - last_e1 != 1 or e2 - last_e2 != 1:
                    nskipped_introns += 1
                else:
                    pair = AlignedPairs.UnalignedPair()

                    intron_from1 = cds1[e1 - 1].mGenomeTo
                    intron_to1 = cds1[e1].mGenomeFrom
                    intron_from2 = cds2[e2 - 1].mGenomeTo
                    intron_to2 = cds2[e2].mGenomeFrom

                    intron_fragment1 = transcript1[intron_from1:intron_to1]
                    intron_fragment2 = transcript2[intron_from2:intron_to2]

                    if len(intron_fragment1) == 0 or len(
                            intron_fragment2) == 0:
                        print "## ERROR: empty intron fragments: %i-%i out of %i and %i-%i out of %i." %\
                              (intron_from1, intron_to1, len(transcript1),
                               intron_from2, intron_to2, len(transcript2))
                        continue

                    pair.mCategory = "intron"
                    pair.mToken1 = token1
                    pair.mId1 = e1 + 1
                    pair.mNum1 = len(cds1) - 1
                    pair.mLen1 = len(intron_fragment1)
                    pair.mFrom1 = intron_from1
                    pair.mTo1 = intron_to1
                    pair.mSequence1 = intron_fragment1
                    pair.mToken2 = token2
                    pair.mId2 = e2 + 1
                    pair.mNum1 = len(cds2) - 1
                    pair.mLen2 = len(intron_fragment2)
                    pair.mFrom2 = intron_from2
                    pair.mTo2 = intron_to2
                    pair.mSequence2 = intron_fragment2

                    if (param_min_intron_length and len(intron_fragment1) < param_min_intron_length) or \
                            (param_min_intron_length and len(intron_fragment2) < param_min_intron_length) or \
                            (param_max_intron_length and len(intron_fragment1) > param_max_intron_length) or \
                            (param_max_intron_length and len(intron_fragment2) > param_max_intron_length):
                        if param_loglevel >= 1:
                            print "# skipped: fragment lengths out of bounds for: %s\t%s\t%s\t%s\t%i\t%i" %\
                                  (token1, e1, token2, e2,
                                   len(intron_fragment1),
                                   len(intron_fragment2))
                            sys.stdout.flush()
                            nskipped += 1

                    print str(pair)

# else:
##                         anchored_from1 = intron_from1 - param_extend_introns
##                         anchored_to1 = intron_to1 + param_extend_introns
##                         anchored_from2 = intron_from2 - param_extend_introns
##                         anchored_to2 = intron_to2 + param_extend_introns

##                         anchored_fragment1 = transcript1[anchored_from1:anchored_to1]
##                         anchored_fragment2 = transcript2[anchored_from2:anchored_to2]

# for method in param_write_introns:

# if param_loglevel >= 2:
# print "## aligning with method %s" % method
# sys.stdout.flush

# map_intron_a2b.clear()

# if method == "unaligned":

##                                 from1, to1, ali1, from2, to2, ali2 = 0, 0, intron_fragment1, 0, 0, intron_fragment2

# elif method in ("dialigned", "dbaligned", "clusaligned", "dialignedlgs"):

##                                 tmp_intron_a2b = alignlib_lite.makeAlignmentVector()

# if param_loglevel >= 1:
# print "# aligning with method %s two fragments of length %i and %i" % (method,
# len(anchored_fragment1),
# len(anchored_fragment2))
# sys.stdout.flush()

# if method == "dialigned":
##                                     result = dialign.Align( anchored_fragment1, anchored_fragment2, tmp_intron_a2b )
# elif method == "dialignedlgs":
##                                     result = dialignlgs.Align( anchored_fragment1, anchored_fragment2, tmp_intron_a2b )
# elif method == "dbaligned":
##                                     result = dba.Align( anchored_fragment1, anchored_fragment2, tmp_intron_a2b )
# elif method == "clusaligned":
##                                     result = clustal.Align( anchored_fragment1, anchored_fragment2, tmp_intron_a2b )
# if not result or result.getLength() == 0:
# if param_loglevel >= 1:
# print "# Error: empty intron alignment"
# sys.stdout.flush()
##                                     nerrors += 1
# continue
##                                 tmp_intron_a2b.moveAlignment( anchored_from1, anchored_from2 )
# alignlib_lite.copyAlignment( map_intron_a2b, tmp_intron_a2b,
##                                                        intron_from1 + 1, intron_to1,
# intron_from2 + 1, intron_to2 )
# elif method == "nwaligned":
##                                 seq1.useSegment( cds1[e1-1].mGenomeTo + 1, cds1[e1].mGenomeFrom )
##                                 seq2.useSegment( cds2[e2-1].mGenomeTo + 1, cds2[e2].mGenomeFrom )
##                                 alignator_nw.Align( seq1, seq2, map_intron_a2b )
# seq1.useFullLength()
# seq2.useFullLength()
# elif method == "swaligned":
##                                 seq1.useSegment( cds1[e1-1].mGenomeTo + 1, cds1[e1].mGenomeFrom )
##                                 seq2.useSegment( cds2[e2-1].mGenomeTo + 1, cds2[e2].mGenomeFrom )
##                                 alignlib_lite.performIterativeAlignment( map_intron_a2b, seq1, seq2, alignator_sw, param_min_score_sw )
# seq1.useFullLength()
# seq2.useFullLength()
# else:
##                                 raise "unknown method %s" % method
# if map_intron_a2b.getLength() > 0:
# if param_compress:
##                                     from1, to1 = map_intron_a2b.getRowFrom(), map_intron_a2b.getRowTo()
##                                     from2, to2 = map_intron_a2b.getColFrom(), map_intron_a2b.getColTo()
##                                     ali1, ali2 = Alignlib.writeAlignmentCompressed( map_intron_a2b )
# else:
# data = map(lambda x: x.split("\t"),
# alignlib_lite.writePairAlignment( seq1, seq2, map_intron_a2b  ).split("\n"))
# if len(data) < 2:
##                                         data=[ ( 0, "", 0), (0, "", 0)]
##                                     from1, ali1, to1 = data[0]
##                                     from2, ali2, to2 = data[1]
# print string.join(map(str, ("intron",
# method,
##                                                         token1, e1, len(cds1) - 1, len(intron_fragment1),
##                                                         token2, e2, len(cds2) - 1, len(intron_fragment2),
# map_intron_a2b.getNumGaps(),
# map_intron_a2b.getLength(),
##                                                         map_intron_a2b.getLength() - map_intron_a2b.getNumGaps(),
##                                                         from1, to1, ali1,
##                                                         from2, to2, ali2,
##                                                         intron_from1, intron_to1,
# intron_from2, intron_to2)), "\t")
# sys.stdout.flush()
        last_e1, last_e2 = e1, e2

    ##########################################################################
    # write concatenated exons
# for method in param_write_exons:
# if method == "common":
# print "exon\tcommon\t%s\t%i\t%s\t%i\t%s\t%s\t%s\t%s\t%s\t%s" % ( token1, 0,
##                                                                            token2, 0,
##                                                                            0, 0,
##                                                                            0, 0,
# ali_common1, ali_common2 )
# elif method == "exons":
# Write full alignment without gaps.
# This will not care about exon boundaries and gaps.
# data = map(lambda x: x.split("\t"),
# alignlib_lite.writePairAlignment( seq1, seq2, dna_map_a2b  ).split("\n"))

# try:
##                 from1, s1, to1, from2, s2, to2 = data[0] + data[1]
# except ValueError:
##                 from1, to1, from2, to2 = 0, 0, 0, 0
##                 s1, s2 = "", ""
##                 nerrors += 1
# except IndexError:
##                 from1, to1, from2, to2 = 0, 0, 0, 0
##                 s1, s2 = "", ""
##                 nerrors += 1

# if from1:
# if len(s1) != len(s2):
# print "# WARNING: alignment of different lengths: %i and %i" % (len(s1), len(s2))
##                     nerrors += 1
##                     from1, to1, from2, to2 = 0, 0, 0, 0
##                     s1, s2 = "", ""
# else:
##                     a1, a2 = [], []
# for x in range( min(len(s1), len(s2)) ):
# if s1[x] != "-" and s2[x] != "-":
##                             a1.append( s1[x] )
##                             a2.append( s2[x] )
##                     s1 = string.join(a1, "")
##                     s2 = string.join(a2, "")

# print "exon\texons\t%s\t%i\t%s\t%i\t%s\t%s\t%s\t%s\t%s\t%s" % ( (token1, 0,
##                                                                              token2, 0,
##                                                                              from1, to1,
##                                                                              from2, to2,
# s1, s2 ) )
# elif method == "full":
# write full alignment (do not care about exon boundaries)
# data = map(lambda x: x.split("\t"),
# alignlib_lite.writePairAlignment( seq1, seq2, dna_map_a2b  ).split("\n"))
##             if len(data) < 2: data=[ ( 0, "", 0), (0, "", 0)]
# print "exon\tfull\t%s\t%i\t%s\t%i\t%s\t%s\t%s\t%s\t%s\t%s" % ( token1, 0,
##                                                                            token2, 0,
##                                                                            data[0][0], data[0][2],
##                                                                            data[1][0], data[1][2],
# data[0][1], data[1][1] )

    if param_loglevel >= 3:
        print "# skipped_exons=%i, skipped_introns=%i" % (nskipped_exons,
                                                          nskipped_introns)

    return nerrors, nskipped
コード例 #4
0
ファイル: liftover_predictions.py プロジェクト: yangjl/cgat
def main( argv = None ):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if argv == None: argv = sys.argv

    parser.add_option("-m", "--filename-map", dest="filename_map", type="string",
                      help="filename with mapping information.")
    parser.add_option("-o", "--pattern-old", dest="pattern_old", type="string",
                      help="pattern for mapping new to old identifiers: extract string from old.")
    parser.add_option("-n", "--pattern-new", dest="pattern_new", type="string",
                      help="pattern for mapping new to old identifiers: put string into new.")
    parser.add_option("-g", "--genome-file", dest="genome_file", type="string",
                      help="genome_file.")
    parser.add_option("-p", "--peptides", dest="filename_peptides", type = "string",
                      help="filename with peptide sequences.")
    parser.add_option("-f", "--input-format", dest="input_format", type="choice",
                      help="format of mapping file", choices=("alignment", "offsets") )
    parser.add_option("-i", "--write-missed", dest="write_missed", type="string",
                      help="write missed identifiers to separate file.")
    parser.add_option("-a", "--filename-genes", dest="filename_genes", type="string",
                      help="filename with gene information.")
    parser.add_option("--filename-old-peptides", dest="filename_old_peptides", type="string",
                      help="filename with old peptide information.")
    parser.add_option("--no-renumber", dest="renumber", action="store_false",
                      help="do not renumber predictions.")
    parser.add_option("--contig-sizes-old", dest="contig_sizes_old", type="string",
                      help="contig sizes for old data.")
    parser.add_option("--contig-sizes-new", dest="contig_sizes_new", type="string",
                      help="contig sizes for new data.")
    parser.add_option("--skip-errors", dest="skip_errors", action="store_true",
                      help="skip entries with errors.")
    
    parser.set_defaults(
        filename_map = None,
        pattern_old = "(.+)",
        pattern_new = "%s",
        genome_file = None,
        filename_peptides = None,
        write_missed = None,
        filename_genes = None,
        filename_old_peptides = None,
        renumber = True,
        input_format = "alignment",
        contig_sizes_old = None,
        contig_sizes_new = None,
        skip_errors = None
        )

    (options, args) = E.Start( parser, add_pipe_options = True)

    predictor = PredictorExonerate()

    ## the different mapping criteria
    map_sbjcts = {}
    breakpoints = {}

    ################################################################################################
    map_transcript2gene = {}
    if options.filename_genes:
        infile = open(options.filename_genes, "r")
        for gene, transcript in map( lambda x: x[:-1].split("\t")[:2], filter( lambda x: x[0] != "#", infile.readlines())):
            map_transcript2gene[transcript] = gene
        infile.close()

    ################################################################################################
    peptides = {}
    if options.filename_peptides:
        peptides = Genomics.ReadPeptideSequences( open(options.filename_peptides, "r"))
        options.stdlog.write( "# read %i peptide sequences.\n" % len(peptides))

    ################################################################################################
    ## read old query sequences and compare against new query sequences
    ## this can be used to build a map between old and new queries
    query_map_old2new = {}        
    if options.filename_old_peptides:
        old_peptides = Genomics.ReadPeptideSequences( open(options.filename_old_peptides, "r"))
        options.stdlog.write( "# read %i old peptide sequences.\n" % len(old_peptides))
        query_map_old2new, unmappable, unmapped = Genomics.MapSequences( old_peptides, peptides)
        options.stdlog.write( "# built map: unmappable=%i unmapped=%i.\n" % (len(unmappable), len(unmapped)))
        if options.loglevel >= 2:
            options.stdlog.write( "# unmappable: %s.\n" % ";".join(unmappable))
            options.stdlog.write( "# unmapped: %s.\n" % ";".join(unmapped))            

    ################################################################################################
    ## read old/new contig sizes for mapping positive/negative coordinates
    contig_sizes_old = {}
    contig_sizes_new = {}
    if options.contig_sizes_old:
        contig_sizes_old = Genomics.ReadContigSizes( open(options.contig_sizes_old, "r") )
    if options.contig_sizes_new:
        contig_sizes_new = Genomics.ReadContigSizes( open(options.contig_sizes_new, "r") )
        
    ################################################################################################        
    if options.filename_map:
        
        infile = open(options.filename_map)
        if options.input_format == "alignments":
            for line in infile:
                if line[0] == "#": continue

                x, old_token, old_from, old_to, old_ali, new_from, new_to, new_ali = line[:-1].split("\t")

                map_sbjcts[old_token] = (old_from, old_ali, new_from, new_ali)

            if options.loglevel >= 1:
                options.stdlog.write( "# read %i alignments.\n" % len(map_sbjcts))

        elif options.input_format == "offsets":
            ## input is a list of segments and their offsets.

            breakpoints, endpoints, offsets = ReadOffsets( infile )
            if options.loglevel >= 1:
                options.stdlog.write( "# read breakpoints for %i chromosomes.\n" % len(breakpoints))

        infile.close()
        
    ################################################################################################
    ################################################################################################
    ################################################################################################
    ## end of input section
    ################################################################################################
    ################################################################################################
    ################################################################################################        

    rx = re.compile(options.pattern_old)
    last_sbjct_token = None
    ninput = 0
    nerrors = 0
    nerrors_map = 0
    nerrors_inconsistencies = 0
    nerrors_boundaries = 0
    nerrors_translation = 0
    nerrors_inconsequential = 0
    nerrors_realigned = 0
    nmapped = 0
    nfiltered = 0
    naligned = 0
    noutput = 0
    found_transcripts = {}
    nduplicates = 0
    output = {}
    
    for line in sys.stdin:
        if line[0] == "#": continue
        
        entry = PredictionParser.PredictionParserEntry()

        entry.Read( line )
        
        ninput += 1
        is_positive = entry.mSbjctStrand == "+"
        
        is_error = False
        
        ## check if query token is mappable: using sequence map
        if (query_map_old2new and entry.mQueryToken not in query_map_old2new):
            options.stdlog.write("# skipping prediction %i: obsolete query %s\n" % (entry.mPredictionId, entry.mQueryToken) )
            nfiltered += 1
            continue
        else:
            ## check if query token is mappable: using filter        
            if (peptides and entry.mQueryToken not in peptides):
                options.stdlog.write("# skipping prediction %i: obsolete query %s\n" % (entry.mPredictionId, entry.mQueryToken) )
                nfiltered += 1
                continue

        new_sbjct_token = options.pattern_new % rx.search(entry.mSbjctToken).groups()[0]

        ##########################################################################################################
        ## Map via alignments
        if entry.mSbjctToken in map_sbjcts:
            nmapped += 1
            if last_sbjct_token != entry.mSbjctToken:
                old_from, old_ali, new_from, new_ali = map_sbjcts[entry.mSbjctToken]
                map_a2b = alignlib_lite.makeAlignmentVector()
                alignlib_lite.AlignmentFormatExplicit(
                    int(old_from), old_ali,
                    int(new_from), new_ali).copy( map_a2b )
                
            last_sbjct_token = entry.mSbjctToken
            
            if options.loglevel >= 3:
                print "#", str(entry)
                print "#", map_sbjcts[entry.mSbjctToken]
                sys.stdout.flush()

            old_f, old_t = entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo

            ## convert to forward coordinates:
            if is_positive:
                f, t= old_f, old_t
                first_res, last_res = f + 1, t                
            else:
                f, t = map_a2b.getRowTo() - old_f, map_a2b.getRowTo() - old_t 
                first_res, last_res = f, t + 1 
            
            ## map first and last residues
            mfirst_res = map_a2b.mapRowToCol( first_res )
            mlast_res = map_a2b.mapRowToCol( last_res )

            if (mfirst_res == 0 and old_f != 0) or (mlast_res == 0 and old_t != map_a2b.getRowTo() ):
                
                options.stderr.write("# mapping not possible for prediction %i on %s %s:%i-%i -> %i-%i -> %i-%i -> %i-%i -> %i-%i\n" % \
                                     (entry.mPredictionId, entry.mSbjctToken, entry.mSbjctStrand,
                                      old_f, old_t,
                                      f, t,
                                      first_res, last_res,
                                      mfirst_res, mlast_res,
                                      f, t))
                
                options.stderr.write("# %s\n" % str(map_sbjcts[entry.mSbjctToken]))
                options.stderr.write("# %s\n" % str(entry))                
                options.stderr.flush()                
                nerrors_boundaries += 1
                is_error = True

                ## get extended boundaries for alignment later on
                while mfirst_res == 0 and first_res > 1:
                    first_res -= 1
                    mfirst_res = map_a2b.mapRowToCol(first_res)
                while mlast_res == 0 and last_res < map_a2b.getRowTo():
                    last_res += 1
                    mlast_res = map_a2b.mapRowToCol(last_res)

            ## convert to genomic coordinates            
            ## convert negative strand coordinates
            if is_positive:
                new_f = mfirst_res - 1
                new_t = mlast_res 
            else:
                new_f = mfirst_res
                new_t = mlast_res - 1
                
                new_f = map_a2b.getColTo() - new_f
                new_t = map_a2b.getColTo() - new_t

            ## Now map the alignment.
            try:
                MapAlignment( entry, map_a2b )
                
            except ValueError:
                options.stderr.write("# alignment mapping not possible for prediction %i on %s %s:%i-%i -> %i-%i -> %i-%i -> %i-%i -> %i-%i -> %i-%i\n" % \
                                     (entry.mPredictionId, entry.mSbjctToken, entry.mSbjctStrand,
                                      old_f, old_t,
                                      f, t,
                                      first_res, last_res,
                                      mfirst_res, mlast_res,
                                      new_f, new_t,
                                      entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo))
                options.stderr.write("# %s\n" % str(map_sbjcts[entry.mSbjctToken]))
                options.stderr.flush()
                nerrors_map += 1
                is_error= True
            
            if new_f != entry.mSbjctGenomeFrom or new_t != entry.mSbjctGenomeTo:
                options.stderr.write("# mapping inconsistency for prediction %i on %s %s:%i-%i -> %i-%i -> %i-%i -> %i-%i -> %i-%i <> %i-%i\n" % \
                                     (entry.mPredictionId, entry.mSbjctToken, entry.mSbjctStrand,
                                      old_f, old_t,
                                      f, t,
                                      first_res, last_res,
                                      mfirst_res, mlast_res,                                      
                                      new_f, new_t,
                                      entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo))
                
                nerrors_inconsistencies += 1
                is_error = True

        ##########################################################################################################
        ## Map via offsets
        if entry.mSbjctToken in breakpoints:

            old_f, old_t = entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo

            ## convert to forward coordinates:
            if is_positive:
                f, t= old_f, old_t
            else:
                f, t = contig_sizes_old[entry.mSbjctToken] - old_t, contig_sizes_old[entry.mSbjctToken] - old_f

            o1 = GetOffset( f,
                            breakpoints[entry.mSbjctToken],
                            endpoints[entry.mSbjctToken],
                            offsets[entry.mSbjctToken] )
            o2 = GetOffset( t,
                            breakpoints[entry.mSbjctToken],
                            endpoints[entry.mSbjctToken],
                            offsets[entry.mSbjctToken] )            

            if o1 != o2:
                options.stderr.write("# break within gene %s\n" % str(entry))
                nerrors_map += 1
                is_error = True
                
            f += o1
            t += o2

            if not is_positive:
                f, t = contig_sizes_new[entry.mSbjctToken] - t, contig_sizes_new[entry.mSbjctToken] - f

            entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo = f, t

            if entry.mSbjctGenomeFrom > entry.mSbjctGenomeTo:
                options.stderr.write("# mapping error: start after end %s\n" % str(entry))
                nerrors_map += 1
                is_error = True
        
        ##########################################################################################################
        ## do translation check, if genome is given
        if options.genome_file:
            genomic_sequence = Genomics.GetGenomicSequence( new_sbjct_token, entry.mSbjctStrand,
                                                            entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo,
                                                            options.genome_file,
                                                            loglevel = 0)

            map_peptide2translation, translation = Genomics.Alignment2PeptideAlignment( \
                entry.mMapPeptide2Genome, entry.mQueryFrom, 0, genomic_sequence )

            if re.sub("X", "", translation) != re.sub("X", "", entry.mTranslation):
                options.stderr.write("# translation error for prediction %i on %s %s:%i-%i -> %i-%i <> %i-%i\n" % \
                                     (entry.mPredictionId, entry.mSbjctToken, entry.mSbjctStrand,
                                      old_f, old_t,
                                      f, t,
                                      entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo))
                if map_sbjcts:
                    options.stderr.write("# %s\n" % str(map_sbjcts[entry.mSbjctToken]))
                options.stderr.write("# old=%s\n# new=%s\n" % (entry.mTranslation, translation))
                options.stderr.write("# old=%s\n# new=%s\n" % (entry.mAlignmentString, Genomics.Alignment2String(entry.mMapPeptide2Genome)))                    
                nerrors_translation += 1
                is_error = True

                if peptides and entry.mQueryToken in peptides:
                    naligned += 1

                    options.stdlog.write( "# aligning: %s versus %s:%s: %i-%i\n" % ( \
                        entry.mQueryToken,
                        new_sbjct_token, entry.mSbjctStrand,
                        entry.mSbjctGenomeFrom, entry.mSbjctGenomeTo))
                    
                    # do a quick reprediction
                    if entry.mQueryToken in peptides:
                        genomic_sequence = Genomics.GetGenomicSequence( new_sbjct_token, entry.mSbjctStrand,
                                                                        0, 0,
                                                                        genome_file = options.genome_pattern,                                                                        
                                                                        loglevel = 0)
                        predictor.mLogLevel = 0

                        
                        result =  predictor(entry.mQueryToken, peptides[entry.mQueryToken],
                                            entry.mSbjctToken, genomic_sequence,
                                            "--exhaustive --subopt FALSE --score '%s' " % str(80),
                                            new_f - 10, new_t + 10)
                        prediction_id = entry.mPredictionId
                        if result:
                            entry = result[0]
                            entry.mPredictionId = prediction_id
                            nerrors_realigned += 1
            else:
                if is_error:
                    nerrors_inconsequential += 1
                    
        entry.mSbjctToken = new_sbjct_token

        ## map query tokens
        if query_map_old2new:
            query_tokens = query_map_old2new[entry.mQueryToken]
        else:
            query_tokens = (entry.mQueryToken,)

        if options.skip_errors and is_error:
            continue

        for query_token in query_tokens:

            entry.mQueryToken = query_token
            
            prediction_id = entry.mPredictionId
            entry.mPredictionId = 0
            
            hid = Genomics.GetHID( str(entry) )
            if hid in output:
                nduplicates += 1
                continue
            
            noutput += 1                        
            if options.renumber: prediction_id = noutput

            entry.mPredictionId = prediction_id

            options.stdout.write( str(entry) + "\n")
            options.stdout.flush()
            found_transcripts[entry.mQueryToken] = 1

    ## write out found transcripts and genes
    nmissed_transcripts = 0
    missed_transcripts = []
    found_genes = {}
    if peptides:
        for x in peptides.keys():
            if x not in found_transcripts:
                nmissed_transcripts += 1
                missed_transcripts.append( x )
            else:
                found_genes[map_transcript2gene[x]] = 1

    missed_genes = {}
    nmissed_genes = 0
    if map_transcript2gene:

        for t in missed_transcripts:
            g = map_transcript2gene[t]
            if g not in found_genes:
                missed_genes[g] = 1
        nmissed_genes = len(missed_genes)
    
    if options.write_missed:
        outfile = open(options.write_missed, "w")
        for x in missed_transcripts:
            if x in unmapped:
                status = "unmapped"
            else:
                status = "mapped"
            outfile.write( "%s\t%s\t%s\n" % ("transcript", x, status ))
        for x in missed_genes:
            status = "unknown"
            outfile.write( "%s\t%s\t%s\n" % ("gene", x, status ))
        
        outfile.close()
        
    options.stdlog.write("# input=%i, output=%i, filtered=%i, nduplicates=%i, mapped=%i, errors=%i\n" % (\
         ninput, noutput, nfiltered, nduplicates, nmapped, nerrors ))
    options.stdlog.write("# errors: inconsequental=%i, boundaries=%i, mapping=%i, inconsistencies=%i, translation=%i, realigned=%i\n" % (\
       nerrors_inconsequential, nerrors_boundaries, nerrors_map, nerrors_inconsistencies, nerrors_translation, nerrors_realigned ))
    options.stdlog.write("# peptides: input=%i, found=%i, missed=%i, found_genes=%i, missed_genes=%i\n" % (\
        len(peptides), len(found_transcripts), nmissed_transcripts, len(found_genes), nmissed_genes) )
    
    E.Stop()
コード例 #5
0
ファイル: prediction2pairs.py プロジェクト: yangjl/cgat
def main( argv = None ):
    """script main.

    parses command line options in sys.argv, unless *argv* is given.
    """

    if argv == None: argv = sys.argv

    parser = E.OptionParser( version = "%prog version: $Id: gpipe/prediction2pairs.py 2031 2008-07-15 09:19:05Z andreas $", usage = globals()["__doc__"])

    parser.add_option( "-g", "--genome-file", dest="genome_file", type="string",
                       help="filename with genomic data (indexed)." )

    parser.add_option( "-c", "--cds", dest="filename_cds", type="string",
                       help="filename with cds seguences." )

    parser.add_option( "-f", "--format", dest="format", type="choice",
                       choices=("paired_fasta", ),
                       help="output format, valid options are: paired_fasta: concatenated pairwise alignments in FASTA format" )

    parser.set_defaults( 
        genome_file = "genome",
        filename_cds = "cds.fasta",
        format = "paired_fasta",
        filename_suffix = ".fasta",
        filename_prefix = "",
        )

    (options, args) = E.Start( parser, add_psql_options = True )    

    if len(args) > 0:
        print USAGE, "no arguments required."
        sys.exit(1)

    fasta = IndexedFasta.IndexedFasta( options.genome_file )

    ## reading CDS sequences
    if options.filename_cds:
        cds_sequences = Genomics.ReadPeptideSequences( open(options.filename_cds, "r") )
    else:
        cds_sequences = {}
    
    if options.loglevel >= 1:
        options.stdlog.write( "# read %i CDS sequences\n" % len(cds_sequences) )

    last_filename_genome = None

    p = PredictionParser.PredictionParserEntry()    
    
    ninput, noutput, nsanity, n3, nlength = 0, 0, 0, 0, 0

    for line in options.stdin:
        
        if line[0] == "#": continue
        if line[0] == '"': continue
        
        p.Read(line)

        ninput += 1

        genomic_fragment = fasta.getSequence( p.mSbjctToken, p.mSbjctStrand,
                                              p.mSbjctGenomeFrom, p.mSbjctGenomeTo )

        if len(genomic_fragment) == 0:
            raise "ERROR: empty fragment %s:%s for line" % (p.mSbjctGenomeFrom, p.mSbjctGenomeTo), line
        
        try:
            cds_fragment = cds_sequences[p.mQueryToken]
        except KeyError:
            options.stdlog.write( "# ERROR: cds not found: query %s.\n" % p.mQueryToken )
            continue

        map_query2sbjct, genomic_fragment = Genomics.Alignment2CDNA( p.mMapPeptide2Genome,
                                                                     query_from = p.mQueryFrom,
                                                                     sbjct_from = 0,
                                                                     genome = genomic_fragment )

        ## check for errors:
        if map_query2sbjct.getRowTo() != p.mQueryTo * 3:
            options.stdlog.write( "# ERROR: boundary shift in query at line %s\n# %i %i\n" % (line, map_query2sbjct.getRowTo(), p.mQueryTo * 3 ) )

        if map_query2sbjct.getColTo() > len(genomic_fragment):
            options.stdlog.write(  "# ERROR: length mismatch in line %s\n# genomic fragment (%i) shorter than last aligned residue (%i)\n" %\
            (line, len(genomic_fragment), map_query2sbjct.getColTo()) )
            options.stdlog.write(  "# cds     %s\n# genomic %s\n" % (str( cds_fragment ), genomic_fragment ))
            nlength += 1
            continue
        
        if map_query2sbjct.getRowTo() > len(cds_fragment):
            options.stdlog.write(  "# ERROR: length mismatch in line %s\n# cds fragment (%i) shorter than last aligned residue (%i)\n" %\
            (line, len(cds_fragment), map_query2sbjct.getRowTo()) )
            options.stdlog.write(  "# cds     %s\n# genomic %s\n" % (str( cds_fragment ), genomic_fragment ))
            nlength += 1
            continue

        cds_seq = alignlib_lite.makeSequence( cds_fragment )
        genomic_seq = alignlib_lite.makeSequence( genomic_fragment )
        
        f = alignlib_lite.AlignmentFormatExplicit( map_query2sbjct, cds_seq, genomic_seq )
        row_ali = f.mRowAlignment
        col_ali = f.mColAlignment
        
        row_ali, col_ali = Genomics.RemoveFrameShiftsFromAlignment(row_ali, col_ali)
        
        row_ali = Genomics.MaskStopCodons( row_ali )
        col_ali = Genomics.MaskStopCodons( col_ali )        

        if len(row_ali) != len(col_ali):
            options.stdlog.write(  "# ERROR: wrong alignment lengths.\n" )
            sys.exit(1)
            
        if len(row_ali) % 3 or len(col_ali) % 3:
            options.stdlog.write( "# ERROR: sequences are not a multiple of 3 in line: %s\n" % line )
            options.stdlog.write( "# %6i %s\n# %6i %s\n" % (len(row_ali), str(row_ali), len(col_ali), str(col_ali) ) )
            n3 += 1

        input = re.sub( "[-X]", "", p.mTranslation )
        ref = re.sub( "[-X]", "", Genomics.TranslateDNA2Protein( col_ali ) )
        if input != ref:
            if options.loglevel >= 1:
                options.stdlog.write("# sanity check failed for %s - %s\n# %6i %s\n# %6i %s\n" % (p.mPredictionId, p.mQueryToken, 
                                                                                                  len(input), input, 
                                                                                                  len(ref), ref ) )
            nsanity += 1
            continue
        
        options.stdout.write(  ">%s\n%s\n" % (p.mPredictionId, row_ali) )
        options.stdout.write(  ">%s_vs_%s_%s_%i_%i\n%s\n" % \
              (p.mQueryToken, p.mSbjctToken, p.mSbjctStrand, p.mSbjctGenomeFrom, p.mSbjctGenomeTo, col_ali) ) 
        noutput += 1

    if options.loglevel >= 1:
        options.stdlog.write("# ninput=%i, noutput=%i, nsanity=%i, nlength=%i, n3=%i\n" % (ninput, noutput, nsanity, nlength, n3) )
                                  
    E.Stop()
コード例 #6
0
ファイル: select_transcripts.py プロジェクト: yangjl/cgat
def EliminateRedundantEntries( rep, 
                               data,
                               eliminated_predictions,
                               options, 
                               peptides,
                               extended_peptides,
                               filter_quality = None,
                               this_quality = None ):
    """eliminate redundant entries in a set."""
    
    eliminated = []

    rep_id = rep.transcript_id
    rep_coverage, rep_pid = rep.mQueryCoverage, rep.mPid

    alignator = alignlib_lite.makeAlignatorDPFull( alignlib_lite.ALIGNMENT_LOCAL, options.gop, options.gep )
    result = alignlib_lite.makeAlignmentVector()
    
    rep_seq = peptides[rep_id]
    rep_extended_seq = extended_peptides[rep_id]

    for entry in data:

        mem_id, mem_coverage, mem_pid, mem_quality = ( entry.transcript_id,
                                                       entry.mQueryCoverage,
                                                       entry.mPid,
                                                       entry.mQuality )

        mem_seq = peptides[mem_id]
        mem_extended_seq = extended_peptides[mem_id]

        if options.loglevel >= 4:
            options.stdlog.write( "# processing: id=%s class=%s\n" % (mem_id, mem_quality))
            
        if mem_id in eliminated_predictions: continue

        if mem_extended_seq == rep_extended_seq:
            eliminated_predictions[mem_id] = rep_id
            eliminated.append( (mem_id, "i") )

        elif mem_extended_seq in rep_extended_seq:
            eliminated_predictions[mem_id] = rep_id
            eliminated.append( (mem_id, "p") )

        else:
            if mem_quality != this_quality or \
                   mem_quality in options.quality_exclude_same:
          
                seq1 = alignlib_lite.makeSequence( str(rep_seq) )
                seq2 = alignlib_lite.makeSequence( str(mem_seq) )            

                alignator.align( result, seq1, seq2 )

                if options.loglevel >= 5:
                    options.stdlog.write( "# ali\n%s\n" % alignlib_lite.AlignmentFormatExplicit( result, seq1, seq2 ) )
                
                pidentity = 100 * alignlib_lite.calculatePercentIdentity( result, seq1, seq2 )
                
                num_gaps = result.getNumGaps()

                if options.loglevel >= 4:
                    options.stdlog.write( "# processing: id=%s class=%s pid=%5.2f rep_cov=%i mem_cov=%i\n" %\
                                              ( mem_id, mem_quality, pidentity, rep_coverage, mem_coverage ) )
                    
                if pidentity >= options.min_identity:

                    keep = False
                    if rep_coverage < mem_coverage - options.safety_coverage or \
                       rep_pid < mem_pid - options.safety_pide:
                        keep = True
                        reason = "covpid"
                    elif num_gaps >= options.max_gaps and \
                         mem_coverage > rep_coverage - options.safety_coverage:
                        keep = True
                        reason = "gaps"
                    elif mem_coverage >= rep_coverage - options.safety_coverage and \
                             100 * (result.getColTo() - result.getColFrom()) / len(mem_seq) < options.max_member_coverage:
                        keep = True
                        reason = "memcov"

                    if keep:
                        options.stdlog.write( "# WARNING: not removing possibly good prediction: %s: rep = %s, mem = %s, rep_cov=%i, rep_pid=%i, mem_cov=%i, mem_pid=%i\n" %\
                              (reason, rep_id, mem_id, rep_coverage, rep_pid, mem_coverage, mem_pid) )
                    else:
                        eliminated_predictions[mem_id] = rep_id                
                        eliminated.append( (mem_id, "h") )
                        
                elif pidentity >= options.min_identity_non_genes and \
                         this_quality in options.quality_genes and \
                         mem_quality not in options.quality_genes:
                    if rep_coverage < mem_coverage - options.safety_coverage or \
                       rep_pid < mem_pid - options.safety_pide:
                        options.stdlog.write( "# WARNING: not removing possibly good prediction: rep = %s, mem = %s, rep_cov=%i, rep_pid=%i, mem_cov=%i, mem_pid=%i\n" %\
                              (rep_id, mem_id, rep_coverage, rep_pid, mem_coverage, mem_pid) )
                    else:
                        eliminated_predictions[mem_id] = rep_id                
                        eliminated.append( (mem_id, "l") )

    return eliminated