def _minimize_level(G): r""" Utility function. Given a matrix group `G` contained in `SL(2, \ZZ / N\ZZ)` for some `N`, test whether or not `G` is the preimage of a subgroup of smaller level, and if so, return that subgroup. The trivial group is handled specially: instead of returning a group, it returns an integer `N`, representing the trivial subgroup of `SL(2, \ZZ / N\ZZ)`. EXAMPLE:: sage: M = MatrixSpace(Zmod(9), 2, 2) sage: G = MatrixGroup([M(x) for x in [[1,1,0,1],[1,3,0,1],[1,0,3,1],[4,0,0,7]]]); G Matrix group over Ring of integers modulo 9 with 4 generators ( [1 1] [1 3] [1 0] [4 0] [0 1], [0 1], [3 1], [0 7] ) sage: sage.modular.arithgroup.congroup_generic._minimize_level(G) Matrix group over Ring of integers modulo 3 with 1 generators ( [1 1] [0 1] ) sage: G = MatrixGroup([M(x) for x in [[1,3,0,1],[1,0,3,1],[4,0,0,7]]]); G Matrix group over Ring of integers modulo 9 with 3 generators ( [1 3] [1 0] [4 0] [0 1], [3 1], [0 7] ) sage: sage.modular.arithgroup.congroup_generic._minimize_level(G) 3 """ from congroup_gamma import Gamma_constructor as Gamma Glist = list(G) N = G.base_ring().characteristic() i = Gamma(N).index() for p in N.prime_divisors(): j = Gamma(N // p).index() k = len( [g for g in Glist if g.matrix().change_ring(Zmod(N // p)) == 1]) if k == i // j: if N // p == 1: return ZZ(1) H = MatrixGroup( [g.matrix().change_ring(Zmod(N // p)) for g in G.gens()]) return _minimize_level(H) # now sanitize the generators (remove duplicates and copies of the identity) new_gens = [x.matrix() for x in G.gens() if x.matrix() != 1] all([x.set_immutable() for x in new_gens]) new_gens = list(Set(new_gens)) if new_gens == []: return ZZ(G.base_ring().characteristic()) return MatrixGroup(new_gens)
def CongruenceSubgroup_constructor(*args): r""" Attempt to create a congruence subgroup from the given data. The allowed inputs are as follows: - A :class:`~sage.groups.matrix_gps.matrix_group.MatrixGroup` object. This must be a group of matrices over `\ZZ / N\ZZ` for some `N`, with determinant 1, in which case the function will return the group of matrices in `SL(2, \ZZ)` whose reduction mod `N` is in the given group. - A list of matrices over `\ZZ / N\ZZ` for some `N`. The function will then compute the subgroup of `SL(2, \ZZ)` generated by these matrices, and proceed as above. - An integer `N` and a list of matrices (over any ring coercible to `\ZZ / N\ZZ`, e.g. over `\ZZ`). The matrices will then be coerced to `\ZZ / N\ZZ`. The function checks that the input G is valid. It then tests to see if `G` is the preimage mod `N` of some group of matrices modulo a proper divisor `M` of `N`, in which case it replaces `G` with this group before continuing. EXAMPLES:: sage: from sage.modular.arithgroup.congroup_generic import CongruenceSubgroup_constructor as CS sage: CS(2, [[1,1,0,1]]) Congruence subgroup of SL(2,Z) of level 2, preimage of: Matrix group over Ring of integers modulo 2 with 1 generators ( [1 1] [0 1] ) sage: CS([matrix(Zmod(2), 2, [1,1,0,1])]) Congruence subgroup of SL(2,Z) of level 2, preimage of: Matrix group over Ring of integers modulo 2 with 1 generators ( [1 1] [0 1] ) sage: CS(MatrixGroup([matrix(Zmod(2), 2, [1,1,0,1])])) Congruence subgroup of SL(2,Z) of level 2, preimage of: Matrix group over Ring of integers modulo 2 with 1 generators ( [1 1] [0 1] ) sage: CS(SL(2, 2)) Modular Group SL(2,Z) Some invalid inputs:: sage: CS(SU(2, 7)) Traceback (most recent call last): ... TypeError: Ring of definition must be Z / NZ for some N """ from sage.groups.matrix_gps.matrix_group import is_MatrixGroup if is_MatrixGroup(args[0]): G = args[0] elif type(args[0]) == type([]): G = MatrixGroup(args[0]) elif args[0] in ZZ: M = MatrixSpace(Zmod(args[0]), 2) G = MatrixGroup([M(x) for x in args[1]]) R = G.matrix_space().base_ring() if not hasattr(R, "cover_ring") or R.cover_ring() != ZZ: raise TypeError, "Ring of definition must be Z / NZ for some N" if not all([x.matrix().det() == 1 for x in G.gens()]): raise ValueError, "Group must be contained in SL(2, Z / N)" GG = _minimize_level(G) if GG in ZZ: from all import Gamma return Gamma(GG) else: return CongruenceSubgroupFromGroup(GG)