コード例 #1
0
 def training_pipeline(cls, **kwargs) -> TrainingPipeline:
     ppo_steps = int(150000)
     return TrainingPipeline(
         named_losses=dict(ppo_loss=PPO(**PPOConfig)),  # type:ignore
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss"],
                           max_stage_steps=ppo_steps)
         ],
         optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam),
                                   dict(lr=1e-4)),
         num_mini_batch=4,
         update_repeats=3,
         max_grad_norm=0.5,
         num_steps=16,
         gamma=0.99,
         use_gae=True,
         gae_lambda=0.95,
         advance_scene_rollout_period=None,
         save_interval=10000,
         metric_accumulate_interval=1,
         lr_scheduler_builder=Builder(
             LambdaLR,
             {"lr_lambda": LinearDecay(steps=ppo_steps)}  # type:ignore
         ),
     )
コード例 #2
0
ファイル: gym_tutorial.py プロジェクト: elliotthwang/allenact
 def training_pipeline(cls, **kwargs) -> TrainingPipeline:
     ppo_steps = int(1.2e6)
     return TrainingPipeline(
         named_losses=dict(ppo_loss=PPO(
             clip_param=0.2,
             value_loss_coef=0.5,
             entropy_coef=0.0,
         ), ),  # type:ignore
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss"],
                           max_stage_steps=ppo_steps),
         ],
         optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam),
                                   dict(lr=1e-3)),
         num_mini_batch=1,
         update_repeats=80,
         max_grad_norm=100,
         num_steps=2000,
         gamma=0.99,
         use_gae=False,
         gae_lambda=0.95,
         advance_scene_rollout_period=None,
         save_interval=200000,
         metric_accumulate_interval=50000,
         lr_scheduler_builder=Builder(
             LambdaLR,
             {"lr_lambda": LinearDecay(steps=ppo_steps)},  # type:ignore
         ),
     )
コード例 #3
0
 def training_pipeline(cls, **kwargs):
     ppo_steps = int(10000000)
     lr = 3e-4
     num_mini_batch = 1
     update_repeats = 3
     num_steps = 30
     save_interval = 1000000
     log_interval = 100
     gamma = 0.99
     use_gae = True
     gae_lambda = 0.95
     max_grad_norm = 0.5
     return TrainingPipeline(
         save_interval=save_interval,
         metric_accumulate_interval=log_interval,
         optimizer_builder=Builder(optim.Adam, dict(lr=lr)),
         num_mini_batch=num_mini_batch,
         update_repeats=update_repeats,
         max_grad_norm=max_grad_norm,
         num_steps=num_steps,
         named_losses={
             "ppo_loss": PPO(**PPOConfig),
             "yn_im_loss": YesNoImitation(yes_action_index=ObjectPlacementTask.class_action_names().index(END)),
         },
         gamma=gamma,
         use_gae=use_gae,
         gae_lambda=gae_lambda,
         advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD,
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss", "yn_im_loss"], max_stage_steps=ppo_steps)
         ],
         lr_scheduler_builder=Builder(
             LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}
         ),
     )
コード例 #4
0
 def training_pipeline(cls, **kwargs) -> TrainingPipeline:
     ppo_steps = int(150000)
     return TrainingPipeline(
         named_losses=dict(
             imitation_loss=Imitation(
                 cls.SENSORS[1]
             ),  # 0 is Minigrid, 1 is ExpertActionSensor
             ppo_loss=PPO(**PPOConfig, entropy_method_name="conditional_entropy"),
         ),  # type:ignore
         pipeline_stages=[
             PipelineStage(
                 teacher_forcing=LinearDecay(
                     startp=1.0, endp=0.0, steps=ppo_steps // 2,
                 ),
                 loss_names=["imitation_loss", "ppo_loss"],
                 max_stage_steps=ppo_steps,
             )
         ],
         optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam), dict(lr=1e-4)),
         num_mini_batch=4,
         update_repeats=3,
         max_grad_norm=0.5,
         num_steps=16,
         gamma=0.99,
         use_gae=True,
         gae_lambda=0.95,
         advance_scene_rollout_period=None,
         save_interval=10000,
         metric_accumulate_interval=1,
         lr_scheduler_builder=Builder(
             LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}  # type:ignore
         ),
     )
コード例 #5
0
 def training_pipeline(cls, **kwargs):
     ppo_steps = int(10000000)
     lr = 3e-4
     num_mini_batch = 1
     update_repeats = 3
     num_steps = 30
     save_interval = 1000000
     log_interval = 100
     gamma = 0.99
     use_gae = True
     gae_lambda = 0.95
     max_grad_norm = 0.5
     return TrainingPipeline(
         save_interval=save_interval,
         metric_accumulate_interval=log_interval,
         optimizer_builder=Builder(optim.Adam, dict(lr=lr)),
         num_mini_batch=num_mini_batch,
         update_repeats=update_repeats,
         max_grad_norm=max_grad_norm,
         num_steps=num_steps,
         named_losses={
             "ppo_loss":
             PPO(**PPOConfig),
             "nie_loss":
             NIE_Reg(
                 agent_pose_uuid="agent_pose_global",
                 pose_uuid="object_pose_global",
                 local_keypoints_uuid="3Dkeypoints_local",
                 global_keypoints_uuid="3Dkeypoints_global",
                 obj_update_mask_uuid="object_update_mask",
                 obj_action_mask_uuid="object_action_mask",
             ),
         },
         gamma=gamma,
         use_gae=use_gae,
         gae_lambda=gae_lambda,
         advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD,
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss", "nie_loss"],
                           max_stage_steps=ppo_steps)
         ],
         lr_scheduler_builder=Builder(
             LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}),
     )
コード例 #6
0
 def training_pipeline(cls, **kwargs) -> TrainingPipeline:
     lr = 1e-4
     ppo_steps = int(8e7)  # convergence may be after 1e8
     clip_param = 0.1
     value_loss_coef = 0.5
     entropy_coef = 0.0
     num_mini_batch = 4  # optimal 64
     update_repeats = 10
     max_grad_norm = 0.5
     num_steps = 2048
     gamma = 0.99
     use_gae = True
     gae_lambda = 0.95
     advance_scene_rollout_period = None
     save_interval = 200000
     metric_accumulate_interval = 50000
     return TrainingPipeline(
         named_losses=dict(ppo_loss=PPO(
             clip_param=clip_param,
             value_loss_coef=value_loss_coef,
             entropy_coef=entropy_coef,
         ), ),  # type:ignore
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss"],
                           max_stage_steps=ppo_steps),
         ],
         optimizer_builder=Builder(cast(optim.Optimizer, optim.Adam),
                                   dict(lr=lr)),
         num_mini_batch=num_mini_batch,
         update_repeats=update_repeats,
         max_grad_norm=max_grad_norm,
         num_steps=num_steps,
         gamma=gamma,
         use_gae=use_gae,
         gae_lambda=gae_lambda,
         advance_scene_rollout_period=advance_scene_rollout_period,
         save_interval=save_interval,
         metric_accumulate_interval=metric_accumulate_interval,
         lr_scheduler_builder=Builder(
             LambdaLR,
             {"lr_lambda": LinearDecay(steps=ppo_steps, startp=1, endp=1)
              },  # constant learning rate
         ),
     )