コード例 #1
0
 def test_resolve_overlap_conflicts_greedily(self):
     spans = [SpanInformation(start=1, end=5, no_label_prob=0.7,
                              label_prob=0.2, label_index=2),
              SpanInformation(start=2, end=7, no_label_prob=0.5,
                              label_prob=0.3, label_index=4)]
     resolved_spans = self.model.resolve_overlap_conflicts_greedily(spans)
     assert resolved_spans == [SpanInformation(start=2, end=7, no_label_prob=0.5,
                                               label_prob=0.3, label_index=4)]
コード例 #2
0
    def construct_trees(self,
                        predictions: torch.FloatTensor,
                        all_spans: torch.LongTensor,
                        num_spans: torch.LongTensor,
                        sentences: List[List[str]],
                        pos_tags: List[List[str]] = None) -> List[Tree]:
        """
        Construct ``nltk.Tree``'s for each batch element by greedily nesting spans.
        The trees use exclusive end indices, which contrasts with how spans are
        represented in the rest of the model.
        Parameters
        ----------
        predictions : ``torch.FloatTensor``, required.
            A tensor of shape ``(batch_size, num_spans, span_label_vocab_size)``
            representing a distribution over the label classes per span.
        all_spans : ``torch.LongTensor``, required.
            A tensor of shape (batch_size, num_spans, 2), representing the span
            indices we scored.
        num_spans : ``torch.LongTensor``, required.
            A tensor of shape (batch_size), representing the lengths of non-padded spans
            in ``enumerated_spans``.
        sentences : ``List[List[str]]``, required.
            A list of tokens in the sentence for each element in the batch.
        pos_tags : ``List[List[str]]``, optional (default = None).
            A list of POS tags for each word in the sentence for each element
            in the batch.
        Returns
        -------
        A ``List[Tree]`` containing the decoded trees for each element in the batch.
        """
        # Switch to using exclusive end spans.
        exclusive_end_spans = all_spans.clone()
        exclusive_end_spans[:, :, -1] += 1
        no_label_id = self.vocab.get_token_index("NO-LABEL", "labels")

        trees: List[Tree] = []
        for batch_index, (scored_spans, spans, sentence) in enumerate(
                zip(predictions, exclusive_end_spans, sentences)):
            selected_spans = []
            for prediction, span in zip(scored_spans[:num_spans[batch_index]],
                                        spans[:num_spans[batch_index]]):
                start, end = span
                no_label_prob = prediction[no_label_id]
                label_prob, label_index = torch.max(prediction, -1)

                # Does the span have a label != NO-LABEL or is it the root node?
                # If so, include it in the spans that we consider.
                if int(label_index) != no_label_id or (start == 0 and end
                                                       == len(sentence)):
                    # TODO(Mark): Remove this once pylint sorts out named tuples.
                    # https://github.com/PyCQA/pylint/issues/1418
                    selected_spans.append(
                        SpanInformation(
                            start=int(start),  # pylint: disable=no-value-for-parameter
                            end=int(end),
                            label_prob=float(label_prob),
                            no_label_prob=float(no_label_prob),
                            label_index=int(label_index)))

            # The spans we've selected might overlap, which causes problems when we try
            # to construct the tree as they won't nest properly.
            consistent_spans = self.resolve_overlap_conflicts_greedily(
                selected_spans)

            spans_to_labels = {
                (span.start, span.end):
                self.vocab.get_token_from_index(span.label_index, "labels")
                for span in consistent_spans
            }
            sentence_pos = pos_tags[
                batch_index] if pos_tags is not None else None
            trees.append(
                self.construct_tree_from_spans(spans_to_labels, sentence,
                                               sentence_pos))

        return trees