def __init__( self, num_heads: int, tensor_1_dim: int, tensor_1_projected_dim: int = None, tensor_2_dim: int = None, tensor_2_projected_dim: int = None, internal_similarity: SimilarityFunction = DotProductSimilarity() ) -> None: super(MultiHeadedSimilarity, self).__init__() self.num_heads = num_heads self._internal_similarity = internal_similarity tensor_1_projected_dim = tensor_1_projected_dim or tensor_1_dim tensor_2_dim = tensor_2_dim or tensor_1_dim tensor_2_projected_dim = tensor_2_projected_dim or tensor_2_dim if tensor_1_projected_dim % num_heads != 0: raise ConfigurationError( "Projected dimension not divisible by number of heads: %d, %d" % (tensor_1_projected_dim, num_heads)) if tensor_2_projected_dim % num_heads != 0: raise ConfigurationError( "Projected dimension not divisible by number of heads: %d, %d" % (tensor_2_projected_dim, num_heads)) self._tensor_1_projection = Parameter( torch.Tensor(tensor_1_dim, tensor_1_projected_dim)) self._tensor_2_projection = Parameter( torch.Tensor(tensor_2_dim, tensor_2_projected_dim)) self.reset_parameters()
def __init__(self, num_heads: int, tensor_1_dim: int, tensor_1_projected_dim: int = None, tensor_2_dim: int = None, tensor_2_projected_dim: int = None, internal_similarity: SimilarityFunction = DotProductSimilarity()) -> None: super(MultiHeadedSimilarity, self).__init__() self.num_heads = num_heads self._internal_similarity = internal_similarity tensor_1_projected_dim = tensor_1_projected_dim or tensor_1_dim tensor_2_dim = tensor_2_dim or tensor_1_dim tensor_2_projected_dim = tensor_2_projected_dim or tensor_2_dim if tensor_1_projected_dim % num_heads != 0: raise ConfigurationError("Projected dimension not divisible by number of heads: %d, %d" % (tensor_1_projected_dim, num_heads)) if tensor_2_projected_dim % num_heads != 0: raise ConfigurationError("Projected dimension not divisible by number of heads: %d, %d" % (tensor_2_projected_dim, num_heads)) # tsalib dim vars defined locally (to minimize changes from original implementation) # better: define and store them in the config dictionary and use everywhere self.D1, self.D2, self.D1p, self.D2p = dim_vars('D1:{0} D2:{1} D1p:{2} D2p:{3}' .format(tensor_1_dim, tensor_2_dim, tensor_1_projected_dim, tensor_2_projected_dim)) # original impl self._tensor_1_projection = Parameter(torch.Tensor(tensor_1_dim, tensor_1_projected_dim)) self._tensor_2_projection = Parameter(torch.Tensor(tensor_2_dim, tensor_2_projected_dim)) # with tsalib: self._tensor_1_projection: (self.D1, self.D1p) = Parameter(torch.Tensor(self.D1, self.D1p)) self._tensor_2_projection: (self.D2, self.D2p) = Parameter(torch.Tensor(self.D2, self.D2p)) self.reset_parameters()
def test_forward_works_on_simple_input(self): attention = LegacyMatrixAttention(DotProductSimilarity()) sentence_1_tensor = Variable(torch.FloatTensor([[[1, 1, 1], [-1, 0, 1]]])) sentence_2_tensor = Variable(torch.FloatTensor([[[1, 1, 1], [-1, 0, 1], [-1, -1, -1]]])) result = attention(sentence_1_tensor, sentence_2_tensor).data.numpy() assert result.shape == (1, 2, 3) assert_allclose(result, [[[3, 0, -3], [0, 2, 0]]])
def __init__(self, similarity_function: SimilarityFunction = None, normalize: bool = True) -> None: super(Attention, self).__init__() self._similarity_function = similarity_function or DotProductSimilarity( ) self._normalize = normalize
def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, projection_feedforward: FeedForward, inference_encoder: Seq2SeqEncoder, output_feedforward: FeedForward, output_logit: FeedForward, final_feedforward: FeedForward, coverage_loss: CoverageLoss, similarity_function: SimilarityFunction = DotProductSimilarity(), dropout: float = 0.5, contextualize_pair_comparators: bool = False, pair_context_encoder: Seq2SeqEncoder = None, pair_feedforward: FeedForward = None, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None) -> None: # Need to send it verbatim because otherwise FromParams doesn't work appropriately. super().__init__( vocab=vocab, text_field_embedder=text_field_embedder, encoder=encoder, similarity_function=similarity_function, projection_feedforward=projection_feedforward, inference_encoder=inference_encoder, output_feedforward=output_feedforward, output_logit=output_logit, final_feedforward=final_feedforward, contextualize_pair_comparators=contextualize_pair_comparators, coverage_loss=coverage_loss, pair_context_encoder=pair_context_encoder, pair_feedforward=pair_feedforward, dropout=dropout, initializer=initializer, regularizer=regularizer) self._answer_loss = torch.nn.BCELoss() self.max_sent_count = 120 self.fc1 = torch.nn.Linear(self.max_sent_count, 10) self.fc2 = torch.nn.Linear(10, 5) self.fc3 = torch.nn.Linear(5, 1) self.out_sigmoid = torch.nn.Sigmoid() self._accuracy = BooleanAccuracy()
def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, projection_feedforward: FeedForward, inference_encoder: Seq2SeqEncoder, output_feedforward: FeedForward, output_logit: FeedForward, final_feedforward: FeedForward, coverage_loss: CoverageLoss, similarity_function: SimilarityFunction = DotProductSimilarity(), dropout: float = 0.5, contextualize_pair_comparators: bool = False, pair_context_encoder: Seq2SeqEncoder = None, pair_feedforward: FeedForward = None, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None) -> None: super().__init__( vocab=vocab, text_field_embedder=text_field_embedder, encoder=encoder, similarity_function=similarity_function, projection_feedforward=projection_feedforward, inference_encoder=inference_encoder, output_feedforward=output_feedforward, output_logit=output_logit, final_feedforward=final_feedforward, coverage_loss=coverage_loss, contextualize_pair_comparators=contextualize_pair_comparators, pair_context_encoder=pair_context_encoder, pair_feedforward=pair_feedforward, dropout=dropout, initializer=initializer, regularizer=regularizer) self._ignore_index = -1 self._answer_loss = torch.nn.CrossEntropyLoss( ignore_index=self._ignore_index) self._coverage_loss = coverage_loss self._accuracy = CategoricalAccuracy() self._entailment_f1 = F1Measure(self._label2idx["entailment"])
token_embedding = BertEmbedder(model) PROJECT_DIM = 768 else: print("Error: Some weird Embedding type", EMBEDDING_TYPE) exit() word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding}) HIDDEN_DIM = 200 params = Params({ 'input_dim': PROJECT_DIM, 'hidden_dims': HIDDEN_DIM, 'activations': 'relu', 'num_layers': NUM_LAYERS, 'dropout': DROPOUT }) attend_feedforward = FeedForward.from_params(params) similarity_function = DotProductSimilarity() params = Params({ 'input_dim': 2 * PROJECT_DIM, 'hidden_dims': HIDDEN_DIM, 'activations': 'relu', 'num_layers': NUM_LAYERS, 'dropout': DROPOUT }) compare_feedforward = FeedForward.from_params(params) params = Params({ 'input_dim': 2 * HIDDEN_DIM, 'hidden_dims': 1, 'activations': 'linear', 'num_layers': 1 }) aggregate_feedforward = FeedForward.from_params(params)
def load_decomposable_attention_elmo_softmax_model(): NEGATIVE_PERCENTAGE = 100 # EMBEDDING_TYPE = "" # LOSS_TYPE = "" # NLL # LOSS_TYPE = "_nll" # NLL LOSS_TYPE = "_mse" # MSE # EMBEDDING_TYPE = "" # EMBEDDING_TYPE = "_glove" # EMBEDDING_TYPE = "_bert" EMBEDDING_TYPE = "_elmo" # EMBEDDING_TYPE = "_elmo_retrained" # EMBEDDING_TYPE = "_elmo_retrained_2" token_indexers = None if EMBEDDING_TYPE == "_elmo" or EMBEDDING_TYPE == "_elmo_retrained" or EMBEDDING_TYPE == "_elmo_retrained_2": token_indexers = {"tokens": ELMoTokenCharactersIndexer()} MAX_BATCH_SIZE = 0 # MAX_BATCH_SIZE = 150 # for bert and elmo reader = QuestionResponseSoftmaxReader(token_indexers=token_indexers, max_batch_size=MAX_BATCH_SIZE) model_file = os.path.join( "saved_softmax_models", "decomposable_attention{}{}_model_{}.th".format( LOSS_TYPE, EMBEDDING_TYPE, NEGATIVE_PERCENTAGE)) vocabulary_filepath = os.path.join( "saved_softmax_models", "vocabulary{}{}_{}".format(LOSS_TYPE, EMBEDDING_TYPE, NEGATIVE_PERCENTAGE)) print("LOADING VOCABULARY") # Load vocabulary vocab = Vocabulary.from_files(vocabulary_filepath) EMBEDDING_DIM = 300 PROJECT_DIM = 200 DROPOUT = 0.2 NUM_LAYERS = 2 if EMBEDDING_TYPE == "": token_embedding = Embedding( num_embeddings=vocab.get_vocab_size('tokens'), embedding_dim=EMBEDDING_DIM, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_glove": token_embedding = Embedding.from_params(vocab=vocab, params=Params({ 'pretrained_file': glove_embeddings_file, 'embedding_dim': EMBEDDING_DIM, 'projection_dim': PROJECT_DIM, 'trainable': False })) elif EMBEDDING_TYPE == "_elmo": # options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x2048_256_2048cnn_1xhighway/elmo_2x2048_256_2048cnn_1xhighway_options.json" # weights_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x2048_256_2048cnn_1xhighway/elmo_2x2048_256_2048cnn_1xhighway_weights.hdf5" options_file = os.path.join( "data", "elmo", "elmo_2x2048_256_2048cnn_1xhighway_options.json") weights_file = os.path.join( "data", "elmo", "elmo_2x2048_256_2048cnn_1xhighway_weights.hdf5") # NOTE: using Small size as medium size gave CUDA out of memory error # options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_options.json" # weights_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_weights.hdf5" # options_file = os.path.join("data", "elmo", "elmo_2x1024_128_2048cnn_1xhighway_options.json") # weights_file = os.path.join("data", "elmo", "elmo_2x1024_128_2048cnn_1xhighway_weights.hdf5") token_embedding = ElmoTokenEmbedder(options_file, weights_file, dropout=DROPOUT, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_elmo_retrained": options_file = os.path.join("data", "bilm-tf", "elmo_retrained", "options.json") weights_file = os.path.join("data", "bilm-tf", "elmo_retrained", "weights.hdf5") token_embedding = ElmoTokenEmbedder(options_file, weights_file, dropout=DROPOUT, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_elmo_retrained_2": options_file = os.path.join("data", "bilm-tf", "elmo_retrained", "options_2.json") weights_file = os.path.join("data", "bilm-tf", "elmo_retrained", "weights_2.hdf5") token_embedding = ElmoTokenEmbedder(options_file, weights_file, dropout=DROPOUT, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_bert": print("Loading bert model") model = BertModel.from_pretrained('bert-base-uncased') token_embedding = BertEmbedder(model) PROJECT_DIM = 768 else: print("Error: Some weird Embedding type", EMBEDDING_TYPE) exit() word_embeddings = BasicTextFieldEmbedder({"tokens": token_embedding}) HIDDEN_DIM = 200 params = Params({ 'input_dim': PROJECT_DIM, 'hidden_dims': HIDDEN_DIM, 'activations': 'relu', 'num_layers': NUM_LAYERS, 'dropout': DROPOUT }) attend_feedforward = FeedForward.from_params(params) similarity_function = DotProductSimilarity() params = Params({ 'input_dim': 2 * PROJECT_DIM, 'hidden_dims': HIDDEN_DIM, 'activations': 'relu', 'num_layers': NUM_LAYERS, 'dropout': DROPOUT }) compare_feedforward = FeedForward.from_params(params) params = Params({ 'input_dim': 2 * HIDDEN_DIM, 'hidden_dims': 1, 'activations': 'linear', 'num_layers': 1 }) aggregate_feedforward = FeedForward.from_params(params) model = DecomposableAttentionSoftmax(vocab, word_embeddings, attend_feedforward, similarity_function, compare_feedforward, aggregate_feedforward) print("MODEL CREATED") # Load model state with open(model_file, 'rb') as f: model.load_state_dict(torch.load(f, map_location='cuda:0')) print("MODEL LOADED!") if torch.cuda.is_available(): # cuda_device = 3 # model = model.cuda(cuda_device) cuda_device = -1 else: cuda_device = -1 predictor = DecomposableAttentionSoftmaxPredictor(model, dataset_reader=reader) return model, predictor
def __init__(self, similarity_function: SimilarityFunction = None) -> None: super().__init__() self._similarity_function = similarity_function or DotProductSimilarity()
def save_top_results(process_no, start_index, end_index): print("Starting process {} with start at {} and end at {}".format( process_no, start_index, end_index)) DATA_FOLDER = "train_data" # EMBEDDING_TYPE = "" LOSS_TYPE = "" # NLL LOSS_TYPE = "_mse" # MSE # EMBEDDING_TYPE = "" # EMBEDDING_TYPE = "_glove" # EMBEDDING_TYPE = "_bert" EMBEDDING_TYPE = "_elmo" # EMBEDDING_TYPE = "_elmo_retrained" # EMBEDDING_TYPE = "_elmo_retrained_2" token_indexers = None if EMBEDDING_TYPE == "_elmo" or EMBEDDING_TYPE == "_elmo_retrained" or EMBEDDING_TYPE == "_elmo_retrained_2": token_indexers = {"tokens": ELMoTokenCharactersIndexer()} MAX_BATCH_SIZE = 0 # MAX_BATCH_SIZE = 150 # for bert and elmo # q_file = os.path.join("squad_seq2seq_train", "rule_based_system_squad_seq2seq_train_case_sensitive_saved_questions_lexparser_sh.txt") # r_file = os.path.join("squad_seq2seq_train", "rule_based_system_squad_seq2seq_train_case_sensitive_generated_answers_lexparser_sh.txt") # rules_file = os.path.join("squad_seq2seq_train", "rule_based_system_squad_seq2seq_train_case_sensitive_generated_answer_rules_lexparser_sh.txt") #NOTE: Squad dev test set q_file = os.path.join( "squad_seq2seq_dev_moses_tokenized", "rule_based_system_squad_seq2seq_dev_test_saved_questions.txt") r_file = os.path.join( "squad_seq2seq_dev_moses_tokenized", "rule_based_system_squad_seq2seq_dev_test_generated_answers.txt") rules_file = os.path.join( "squad_seq2seq_dev_moses_tokenized", "rule_based_system_squad_seq2seq_dev_test_generated_answer_rules.txt") reader = QuestionResponseSoftmaxReader(q_file, r_file, token_indexers=token_indexers, max_batch_size=MAX_BATCH_SIZE) glove_embeddings_file = os.path.join("data", "glove", "glove.840B.300d.txt") # RESULTS_DIR = "squad_seq2seq_train2" #NOTE: All other experiments # RESULTS_DIR = "squad_seq2seq_train_moses_tokenized" # make_dir_if_not_exists(RESULTS_DIR) # all_results_save_file = os.path.join(RESULTS_DIR, "squad_seq2seq_train_predictions_start_{}_end_{}.txt".format(start_index, end_index)) #NOTE: Squad dev test set RESULTS_DIR = "squad_seq2seq_dev_moses_tokenized" make_dir_if_not_exists(RESULTS_DIR) all_results_save_file = os.path.join( RESULTS_DIR, "squad_seq2seq_dev_test_predictions_start_{}_end_{}.txt".format( start_index, end_index)) with open(all_results_save_file, "w") as all_writer: print("Testing out model with", EMBEDDING_TYPE, "embeddings") print("Testing out model with", LOSS_TYPE, "loss") # for NEGATIVE_PERCENTAGE in [100,50,20,10,5,1]: for NEGATIVE_PERCENTAGE in [100]: model_file = os.path.join( "saved_softmax_models", "decomposable_attention{}{}_model_{}.th".format( LOSS_TYPE, EMBEDDING_TYPE, NEGATIVE_PERCENTAGE)) vocabulary_filepath = os.path.join( "saved_softmax_models", "vocabulary{}{}_{}".format(LOSS_TYPE, EMBEDDING_TYPE, NEGATIVE_PERCENTAGE)) print("LOADING VOCABULARY") # Load vocabulary vocab = Vocabulary.from_files(vocabulary_filepath) EMBEDDING_DIM = 300 PROJECT_DIM = 200 DROPOUT = 0.2 NUM_LAYERS = 2 if EMBEDDING_TYPE == "": token_embedding = Embedding( num_embeddings=vocab.get_vocab_size('tokens'), embedding_dim=EMBEDDING_DIM, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_glove": token_embedding = Embedding.from_params( vocab=vocab, params=Params({ 'pretrained_file': glove_embeddings_file, 'embedding_dim': EMBEDDING_DIM, 'projection_dim': PROJECT_DIM, 'trainable': False })) elif EMBEDDING_TYPE == "_elmo": # options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x2048_256_2048cnn_1xhighway/elmo_2x2048_256_2048cnn_1xhighway_options.json" # weights_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x2048_256_2048cnn_1xhighway/elmo_2x2048_256_2048cnn_1xhighway_weights.hdf5" options_file = os.path.join( "data", "elmo", "elmo_2x2048_256_2048cnn_1xhighway_options.json") weights_file = os.path.join( "data", "elmo", "elmo_2x2048_256_2048cnn_1xhighway_weights.hdf5") # NOTE: using Small size as medium size gave CUDA out of memory error # options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_options.json" # weights_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_weights.hdf5" # options_file = os.path.join("data", "elmo", "elmo_2x1024_128_2048cnn_1xhighway_options.json") # weights_file = os.path.join("data", "elmo", "elmo_2x1024_128_2048cnn_1xhighway_weights.hdf5") token_embedding = ElmoTokenEmbedder(options_file, weights_file, dropout=DROPOUT, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_elmo_retrained": options_file = os.path.join("data", "bilm-tf", "elmo_retrained", "options.json") weights_file = os.path.join("data", "bilm-tf", "elmo_retrained", "weights.hdf5") token_embedding = ElmoTokenEmbedder(options_file, weights_file, dropout=DROPOUT, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_elmo_retrained_2": options_file = os.path.join("data", "bilm-tf", "elmo_retrained", "options_2.json") weights_file = os.path.join("data", "bilm-tf", "elmo_retrained", "weights_2.hdf5") token_embedding = ElmoTokenEmbedder(options_file, weights_file, dropout=DROPOUT, projection_dim=PROJECT_DIM) elif EMBEDDING_TYPE == "_bert": print("Loading bert model") model = BertModel.from_pretrained('bert-base-uncased') token_embedding = BertEmbedder(model) PROJECT_DIM = 768 else: print("Error: Some weird Embedding type", EMBEDDING_TYPE) exit() word_embeddings = BasicTextFieldEmbedder( {"tokens": token_embedding}) HIDDEN_DIM = 200 params = Params({ 'input_dim': PROJECT_DIM, 'hidden_dims': HIDDEN_DIM, 'activations': 'relu', 'num_layers': NUM_LAYERS, 'dropout': DROPOUT }) attend_feedforward = FeedForward.from_params(params) similarity_function = DotProductSimilarity() params = Params({ 'input_dim': 2 * PROJECT_DIM, 'hidden_dims': HIDDEN_DIM, 'activations': 'relu', 'num_layers': NUM_LAYERS, 'dropout': DROPOUT }) compare_feedforward = FeedForward.from_params(params) params = Params({ 'input_dim': 2 * HIDDEN_DIM, 'hidden_dims': 1, 'activations': 'linear', 'num_layers': 1 }) aggregate_feedforward = FeedForward.from_params(params) model = DecomposableAttentionSoftmax(vocab, word_embeddings, attend_feedforward, similarity_function, compare_feedforward, aggregate_feedforward) print("MODEL CREATED") # Load model state with open(model_file, 'rb') as f: device = torch.device('cpu') model.load_state_dict(torch.load(f, map_location=device)) print("MODEL LOADED!") if torch.cuda.is_available(): # cuda_device = 3 # model = model.cuda(cuda_device) cuda_device = -1 else: cuda_device = -1 predictor = DecomposableAttentionSoftmaxPredictor( model, dataset_reader=reader) # Read test file and get predictions gold = list() predicted_labels = list() probs = list() total_time = avg_time = 0.0 print("Started Testing:", NEGATIVE_PERCENTAGE) # before working on anything just save all the questions and responses in a list all_data = list() examples_count = processed_examples_count = 0 with open(q_file, 'r') as q_reader, open(r_file, "r") as r_reader, open( rules_file, "r") as rule_reader: logger.info("Reading questions from : %s", q_file) logger.info("Reading responses from : %s", r_file) q = next(q_reader).lower().strip() q = mt.tokenize(q, return_str=True, escape=False) current_qa = (q, "") current_rules_and_responses = list() for i, (response, rule) in enumerate(zip(r_reader, rule_reader)): response = response.strip() rule = rule.strip() if response and rule: # get current_answer from response a = get_answer_from_response(response) if not current_qa[1]: current_qa = (q, a) else: # verify if the a is same as the one in current_qa if a != current_qa[1]: # print("answer phrase mismatch!!", current_qa, ":::", a, ":::", response) current_qa = (current_qa[0], a) # print(current_rules_and_responses) # exit() # Add it to the current responses current_rules_and_responses.append((response, rule)) elif len(current_rules_and_responses) > 0: # Create a instance # print(current_qa) # print(current_rules_and_responses) # exit() if rule or response: print("Rule Response mismatch") print(current_qa) print(response) print(rule) print(examples_count) print(i) exit() if examples_count < start_index: examples_count += 1 q = next(q_reader).lower().strip() q = mt.tokenize(q, return_str=True, escape=False) current_qa = (q, "") current_rules_and_responses = list() continue elif examples_count > end_index: break all_data.append( (current_qa, current_rules_and_responses)) try: q = next(q_reader).lower().strip() q = mt.tokenize(q, return_str=True, escape=False) except StopIteration: # previous one was the last question q = "" current_qa = (q, "") current_rules_and_responses = list() examples_count += 1 # if(examples_count%100 == 0): # print(examples_count) else: # Serious Bug print("Serious BUG!!") print(current_qa) print(response) print(rule) print(examples_count) print(i) exit() print("{}:\tFINISHED IO".format(process_no)) examples_count = start_index processed_examples_count = 0 for current_qa, responses_and_rules in all_data: start_time = time.time() # Tokenize and preprocess the responses preprocessed_responses = [ mt.tokenize(remove_answer_brackets(response), return_str=True, escape=False) for response, rule in responses_and_rules ] # predictions = predictor.predict(current_qa[0], [remove_answer_brackets(response) for response, rule in responses_and_rules]) predictions = predictor.predict(current_qa[0], preprocessed_responses) label_probs = predictions["label_probs"] tuples = zip(responses_and_rules, label_probs) sorted_by_score = sorted(tuples, key=lambda tup: tup[1], reverse=True) count = 0 all_writer.write("{}\n".format(current_qa[0])) all_writer.write("{}\n".format(current_qa[1])) for index, ((response, rule), label_prob) in enumerate(sorted_by_score): if index == 3: break all_writer.write("{}\t{}\t{}\t{}\n".format( response, mt.tokenize(remove_answer_brackets(response), return_str=True, escape=False), rule, label_prob)) all_writer.write("\n") all_writer.flush() end_time = time.time() processed_examples_count += 1 examples_count += 1 total_time += end_time - start_time avg_time = total_time / float(processed_examples_count) print( "{}:\ttime to write {} with {} responses is {} secs. {} avg time" .format(process_no, examples_count, len(responses_and_rules), end_time - start_time, avg_time))
def __init__(self, similarity_function=None): super(LegacyMatrixAttention, self).__init__() self._similarity_function = similarity_function or DotProductSimilarity( )