def test_sequence_recall(self):
        recall = UnigramRecall()
        gold = torch.Tensor([[1, 2, 3], [2, 4, 8], [7, 1, 1]])
        predictions = torch.Tensor([[[1, 2, 3], [1, 2, -1]],
                                    [[2, 4, 8], [2, 5, 9]],
                                    [[-1, -1, -1], [7, 1, -1]]])

        recall(predictions, gold)
        actual_recall = recall.get_metric()
        numpy.testing.assert_almost_equal(actual_recall, 1)
コード例 #2
0
    def test_sequence_recall_accumulates_and_resets_correctly(self):
        recall = UnigramRecall()
        gold = torch.Tensor([[1, 2, 3]])
        recall(torch.Tensor([[[1, 2, 3]]]), gold)
        recall(torch.Tensor([[[7, 8, 4]]]), gold)

        actual_recall = recall.get_metric(reset=True)
        numpy.testing.assert_almost_equal(actual_recall, 1/2)
        assert recall.correct_count == 0
        assert recall.total_count == 0
    def test_sequence_recall_accumulates_and_resets_correctly(self):
        recall = UnigramRecall()
        gold = torch.Tensor([[1, 2, 3]])
        recall(torch.Tensor([[[1, 2, 3]]]), gold)
        recall(torch.Tensor([[[7, 8, 4]]]), gold)

        actual_recall = recall.get_metric(reset=True)
        numpy.testing.assert_almost_equal(actual_recall, 1 / 2)
        assert recall.correct_count == 0
        assert recall.total_count == 0
コード例 #4
0
    def test_sequence_recall_accumulates_and_resets_correctly(self, device: str):
        recall = UnigramRecall()
        gold = torch.tensor([[1, 2, 3]], device=device)
        recall(torch.tensor([[[1, 2, 3]]], device=device), gold)
        recall(torch.tensor([[[7, 8, 4]]], device=device), gold)

        actual_recall = recall.get_metric(reset=True)
        assert_allclose(actual_recall, 1 / 2)
        assert recall.correct_count == 0
        assert recall.total_count == 0
コード例 #5
0
    def test_sequence_recall(self, device: str):
        recall = UnigramRecall()
        gold = torch.tensor([[1, 2, 3], [2, 4, 8], [7, 1, 1]], device=device)
        predictions = torch.tensor(
            [[[1, 2, 3], [1, 2, -1]], [[2, 4, 8], [2, 5, 9]], [[-1, -1, -1], [7, 1, -1]]],
            device=device,
        )

        recall(predictions, gold)
        actual_recall = recall.get_metric()
        assert_allclose(actual_recall, 1)
    def test_sequence_recall_respects_mask(self):
        recall = UnigramRecall()
        gold = torch.Tensor([[2, 4, 8], [1, 2, 3], [7, 1, 1], [11, 14, 17]])
        predictions = torch.Tensor([
            [[2, 4, 8], [2, 5, 9]],  # 3/3
            [[-1, 2, 4], [3, 8, -1]],  # 2/2
            [[-1, -1, -1], [7, 2, -1]],  # 1/2
            [[12, 13, 17], [11, 13, 18]]  # 2/2
        ])
        mask = torch.Tensor([[1, 1, 1], [0, 1, 1], [1, 1, 0], [1, 0, 1]])

        recall(predictions, gold, mask)
        actual_recall = recall.get_metric()
        numpy.testing.assert_almost_equal(actual_recall, 7 / 8)
コード例 #7
0
ファイル: event2mind.py プロジェクト: enesozi/event2mind
 def __init__(self, num_classes: int, input_dim: int,
              output_dim: int) -> None:
     super().__init__()
     self.embedder = Embedding(num_classes, input_dim)
     self.decoder_cell = GRUCell(input_dim, output_dim)
     self.output_projection_layer = Linear(output_dim, num_classes)
     self.recall = UnigramRecall()
コード例 #8
0
    def test_sequence_recall(self):
        recall = UnigramRecall()
        gold = torch.Tensor([
                [1, 2, 3],
                [2, 4, 8],
                [7, 1, 1]
        ])
        predictions = torch.Tensor([
                [[1, 2, 3], [1, 2, -1]],
                [[2, 4, 8], [2, 5, 9]],
                [[-1, -1, -1], [7, 1, -1]]
        ])

        recall(predictions, gold)
        actual_recall = recall.get_metric()
        numpy.testing.assert_almost_equal(actual_recall, 1)
コード例 #9
0
    def test_distributed_accuracy(self):
        gold = torch.tensor([[2, 4, 8], [1, 2, 3], [7, 1, 1], [11, 14, 17]])
        predictions = torch.tensor([
            [[2, 4, 8], [2, 5, 9]],  # 3/3
            [[-1, 2, 4], [3, 8, -1]],  # 2/2
            [[-1, -1, -1], [7, 2, -1]],  # 1/2
            [[12, 13, 17], [11, 13, 18]],  # 2/2
        ])
        mask = torch.tensor([[True, True, True], [False, True, True],
                             [True, True, False], [True, False, True]])
        gold = [gold[:2], gold[2:]]
        predictions = [predictions[:2], predictions[2:]]
        mask = [mask[:2], mask[2:]]

        metric_kwargs = {
            "predictions": predictions,
            "gold_labels": gold,
            "mask": mask
        }
        desired_values = {"unigram_recall": 7 / 8}
        run_distributed_test(
            [-1, -1],
            global_distributed_metric,
            UnigramRecall(),
            metric_kwargs,
            desired_values,
            exact=False,
        )
コード例 #10
0
    def test_sequence_recall_respects_mask(self, device: str):
        recall = UnigramRecall()
        gold = torch.tensor([[2, 4, 8], [1, 2, 3], [7, 1, 1], [11, 14, 17]], device=device)
        predictions = torch.tensor(
            [
                [[2, 4, 8], [2, 5, 9]],  # 3/3
                [[-1, 2, 4], [3, 8, -1]],  # 2/2
                [[-1, -1, -1], [7, 2, -1]],  # 1/2
                [[12, 13, 17], [11, 13, 18]],  # 2/2
            ],
            device=device,
        )
        mask = torch.tensor([[1, 1, 1], [0, 1, 1], [1, 1, 0], [1, 0, 1]], device=device)

        recall(predictions, gold, mask)
        actual_recall = recall.get_metric()
        assert_allclose(actual_recall, 7 / 8)
コード例 #11
0
 def __init__(self, name: str, event2mind: Event2Mind, num_classes: int,
              input_dim: int, output_dim: int) -> None:
     self.embedder = Embedding(num_classes, input_dim)
     event2mind.add_module(f"{name}_embedder", self.embedder)
     self.decoder_cell = GRUCell(input_dim, output_dim)
     event2mind.add_module(f"{name}_decoder_cell", self.decoder_cell)
     self.output_projection_layer = Linear(output_dim, num_classes)
     event2mind.add_module(f"{name}_output_project_layer",
                           self.output_projection_layer)
     self.recall = UnigramRecall()
コード例 #12
0
    def test_sequence_recall_respects_mask(self):
        recall = UnigramRecall()
        gold = torch.Tensor([
                [2, 4, 8],
                [1, 2, 3],
                [7, 1, 1],
                [11, 14, 17]
        ])
        predictions = torch.Tensor([
                [[2, 4, 8], [2, 5, 9]], # 3/3
                [[-1, 2, 4], [3, 8, -1]], # 2/2
                [[-1, -1, -1], [7, 2, -1]], # 1/2
                [[12, 13, 17], [11, 13, 18]] # 2/2
        ])
        mask = torch.Tensor([
                [1, 1, 1],
                [0, 1, 1],
                [1, 1, 0],
                [1, 0, 1]
        ])

        recall(predictions, gold, mask)
        actual_recall = recall.get_metric()
        numpy.testing.assert_almost_equal(actual_recall, 7/8)
コード例 #13
0
def multiple_runs(
    global_rank: int,
    world_size: int,
    gpu_id: Union[int, torch.device],
    metric: UnigramRecall,
    metric_kwargs: Dict[str, List[Any]],
    desired_values: Dict[str, Any],
    exact: Union[bool, Tuple[float, float]] = True,
):

    kwargs = {}
    # Use the arguments meant for the process with rank `global_rank`.
    for argname in metric_kwargs:
        kwargs[argname] = metric_kwargs[argname][global_rank]

    for i in range(200):
        metric(**kwargs)

    assert desired_values["unigram_recall"] == metric.get_metric(
    )["unigram_recall"]
コード例 #14
0
    def test_get_metric_on_new_object_works(self):
        recall = UnigramRecall()

        actual_recall = recall.get_metric(reset=True)
        numpy.testing.assert_almost_equal(actual_recall, 0)
コード例 #15
0
    def test_get_metric_on_new_object_works(self, device: str):
        recall = UnigramRecall()

        actual_recall = recall.get_metric(reset=True)
        assert_allclose(actual_recall, 0)
    def test_get_metric_on_new_object_works(self):
        recall = UnigramRecall()

        actual_recall = recall.get_metric(reset=True)
        numpy.testing.assert_almost_equal(actual_recall, 0)